How dynamical regime and neuronal network structure influence synchronous events

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

How dynamical regime and neuronal network structure influence synchronous events

Published Date

2019-06

Publisher

Type

Thesis or Dissertation

Abstract

Synchronization of spiking neuronal activity plays a role in many important processes in the human body. In 2011, Zhao, Beverlin, Netoff, and Nykamp explored the relationship between synchrony and network structure by developing the SONET model where one can modulate the microstructure of the network by adjusting frequencies of pairs of directed connections between nodes, which correspond to the second order statistics of the network. We extended the SONET framework to allow for the prescription of probabilities of neuronal connections based on location to modulate spatial macrostructure. We used this spatial SONET model to explore how both network microstructure (SONET motif frequencies) and macrostructure influence the emergence of synchrony. To enable a consistent analysis of synchrony across a wide range of networks, we developed a novel measure of synchrony based on the rate of synchronous events. We discovered that the microstructure played the dominant role in shaping synchrony. Moreover, we found that the influence of the microstructure can depend on the dynamics of the inputs to the network.

Description

University of Minnesota Ph.D. dissertation. June 2019. Major: Mathematics. Advisor: Duane Nykamp. 1 computer file (PDF); viii, 63 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Baker, Brittany. (2019). How dynamical regime and neuronal network structure influence synchronous events. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/206338.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.