High-order filtered schemes for the Hamilton-Jacobi continuum limit of nondominated sorting

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

High-order filtered schemes for the Hamilton-Jacobi continuum limit of nondominated sorting

Published Date

2017

Publisher

Type

Presentation

Abstract

We investigate high-order finite difference schemes for the Hamilton-Jacobi equation continuum limit of nondominated sorting. Nondominated sorting is an algorithm for sorting points in Euclidean space into layers by repeatedly removing minimal elements. It is widely used in multi-objective optimization, which finds applications in many scientific and engineering contexts, including machine learning. In this paper, we show how to construct filtered schemes, which combine high order possibly unstable schemes with first order monotone schemes in a way that guarantees stability and convergence while enjoying the additional accuracy of the higher order scheme in regions where the solution is smooth. We prove that our filtered schemes are stable and converge to the viscosity solution of the Hamilton-Jacobi equation, and we provide numerical simulations to investigate the rate of convergence of the new schemes.

Keywords

Description

Related to

Replaces

License

Series/Report Number

Funding information

This research was supported by the Undergraduate Research Opportunities Program (UROP) and partially supported by NSF grant DMS-1713691.

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Thawinrak, Warut; Calder, Jeff. (2017). High-order filtered schemes for the Hamilton-Jacobi continuum limit of nondominated sorting. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/191860.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.