Germanium nanocrystal solar cells.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Germanium nanocrystal solar cells.

Published Date

2010-08

Publisher

Type

Thesis or Dissertation

Abstract

Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10- 15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry. As-deposited films are electrically insulating due to the long hydrocarbon molecules separating neighboring particles; however, mass spectrometry shows that annealing treatments successfully decompose these molecules. After annealing at 250 °C, Ge NC films exhibit conductivities as large as 10-6 S/cm. In the second film deposition scheme, a Ge NC colloid is formed by dispersing Ge NCs in select solvents without further surface modification. While these “bare” NCs quickly agglomerate and flocculate in nearly all non-polar solvents, they remain stable in benzonitrile and 1,2-dichlorobenzene, among others. Thin-film field-effect transistors have been fabricated by spinning Ge NC colloids onto substrates and the films have been subjected to various annealing procedures. The devices show n-type, p-type, or ambipolar behavior depending on the annealing conditions, with Ge NC films annealed at 300 °C exhibiting electron saturation mobilities greater than 10-2 cm2/Vs and on-to-off ratios of 104. The final film deposition scheme involves the impaction of Ge NCs onto substrates downstream of the synthesis plasma via acceleration of the NCs through an orifice. This technique produces highly uniform films with densities greater than 50% of the density of bulk Ge. By varying the size of the Ge NCs, we have measured films with band gaps ranging from the bulk value of 0.7 eV to over 1.1 eV for films of 4 nm Ge NCs. Having deposited dense thin films with tunable band gaps and respectable mobilities, we have begun fabricating bilayer solar cells consisting of heterojunctions between Ge NC films and P3HT, Si NCs, or Si wafers. Preliminary devices exhibit opencircuit voltages and short-circuit currents as large as 0.3 V and 4 mA/cm2, respectively.

Description

University of Minnesota Ph.D. dissertation. September 2010. Major: Mechanical Engineering. Advisor: Uwe R. Kortshagen. 1 computer file (PDF); xiii, 205 pages, appendix p. 203-205.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Holman, Zachary Charles. (2010). Germanium nanocrystal solar cells.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/116701.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.