Desorption from Contaminated Sediment and the Organic-Carbon Normalized Sediment-Water Partition Coefficient, Koc, for Dioxin

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Desorption from Contaminated Sediment and the Organic-Carbon Normalized Sediment-Water Partition Coefficient, Koc, for Dioxin

Published Date

1998-09

Publisher

University of Minnesota Duluth

Type

Technical Report

Abstract

We use the “solids concentration effect” in an attempt to measure the organic-carbon normalized sediment-water partition coefficient, Koc, for 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) using desorption from contaminated sediment from Lake Ontario. The sediment was collected from Station 208 (Onuska et al., J. Great Lakes Res. 9(2), 169-182, 1983); it contains 470 pg/g dry weight of dioxin and 2.37% of organic carbon. We prepared a series of sediment suspensions of decreasing solids concentration; after various periods of equilibration followed by separation of sediment solids and water by sedimentation, we analyzed the aqueous phase for dioxin and organic carbon. The ranges of solids concentration (Cs,w ), of total aqueous phase dioxin (Clc,w ), and of aqueous phase organic carbon (Coc,w) are 0.06-60 g/L, 2-1000 pg/L, and 0.23-65 mg/L respectively. For the measured partition coefficient, Kmoc , our data fit the functions, log Kmoc = a constant - log Cs,w, and log Kmoc = a constant - log Csorb,w; values of R2 range from 0.61 to 0.92. Csorb,w is related to the organic carbon content of the water by Csorb,w = Coc,w - 0.2 mg / L; the prime indicates that the aqueous organic carbon levels are corrected for blank contributions. The total aqueous phase dioxin concentration only depends strongly on the concentration of organic carbon when Coc,w > 0.2 mg / L. We think this is an example of the phenomenon described by the term “critical micelle concentration”, CMC, which is usually reserved for the description of surfactant solutions, but here we have evidence that it applies to natural organic carbon also. For the system here the CMC is about 0.2 mg/L. By spiking the apparatus with C13-labeled dioxin, we are able to judge the degree to which the system has reached equilibrium or steady state. We establish clearly thereby that the dioxin in the water is at steady state in four experiments. Another feature is the recovery of the settled sediment solids at the end of experiments, and we show that the dioxin concentration, on a dry weight basis, decreases; levels are in the range 230-380 pg/g. This begs the question: What is the organic-carbon normalized dioxin concentration in the sediment at the end of the experiment? With assumptions, mass balance shows that significant quantities of organic carbon are adsorbed on the walls of the apparatus, and it appears that equilibrium is reached when concentrations of dioxin on organic material in the sediment, in the water and on the walls of the apparatus are the same. When doing partitioning experiments at low solids in large apparatus, it is important to recover the settled solids, and determine the level of adsorbed chemical and the organic carbon content. Then, we can complete the mass balance and determine uniquely the quantities of material adsorbed to the walls of the apparatus. Work with less hydrophobic compounds than dioxin shows that Kmoc becomes independent of solids concentration as the solids concentration decreases, whence Koc = Kmoc. We did not reach a sufficiently small concentration of solids; however, we are able to conclude that for dioxin Koc > 7.1; this observation agrees with other partitioning work done with dioxin and its isomers.

Description

In partial fulfillment of the requirements under U.S. EPA Cooperative Agreement No. CR-817486. through the Environmental Research Laboratory-Duluth Project Officer Dr. P.M.' Cook

Related to

Replaces

License

Series/Report Number

NRRI Technical Report;NRRI/TR-98/31
U.S. EPA Cooperative Agreement;No. CR-817486

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Lodge, Keith B; Cook, P.M.. (1998). Desorption from Contaminated Sediment and the Organic-Carbon Normalized Sediment-Water Partition Coefficient, Koc, for Dioxin. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/187071.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.