A fundamental study of high pressure turbine blade trailing edge cooling: an experimental and numerical approach.
2010-11
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
A fundamental study of high pressure turbine blade trailing edge cooling: an experimental and numerical approach.
Alternative title
Authors
Published Date
2010-11
Publisher
Type
Thesis or Dissertation
Abstract
Experimental and computational results regarding turbulent mixing of passage
flow and the coolant from a high-pressure turbine blade trailing edge cooling
scheme are documented. Special interest is devoted to gaining a fundamental
understanding of the thermal protection provided by the cooling scheme.
The trailing edge cooling scheme is a scaled version of a generic scheme, tested
in a suction type wind tunnel. The scaled model is three-dimensional with
rectangular ribs. Three different lip geometries (square, single round, and double
round) are tested. The freestream Reynolds number, based upon the lip
thickness, is fixed at 10,200. Primarily, three blowing ratios, M=1.5, M=1.0, and
M=0.5 are documented. A hot-wire sensor and a thermocouple are placed inside
the slot and detailed measurements of velocities, turbulence intensities, and
temperatures are acquired. Values of adiabatic effectiveness obtained on the
model surface quantify thermal protection.
Spectral analysis of the hot-wire signal is performed at various locations in the
flow field. Spectra indicate a coherent mechanism of mixing. This clear
unsteadiness is attributed to vortex shedding from the lip. It is shown that
effectiveness increases as the blowing ratio increases. This document suggests
also that lip geometry is an influential parameter for this cooling scheme.
Effectiveness is greatly increased when a rounded lip is utilized. In one case,
additional blowing ratios (M=0.75 and M=1.25) were tested. Experiments concluded that above M=1.25, effectiveness is insensitive to blowing ratio.
Two-dimensional simulations are presented for M=1.5, M=1.0 and M=0.5. They
use various Reynolds Averaged Navier Stokes turbulence closure models. The
frequencies of unsteadiness are well modeled but, in general, effectiveness is
over-predicted. Furthermore, general features of the flow and thermal fields are
modeled well, but surface heat transfer characteristics are not.
Description
University of Minnesota M.S. thesis. November 2010. Major: Mechanical Engineering. Advisor: Dr. Terrence W. Simon. 1 computer file (PDF); xii, 126 pages, appendix p. 121-126. Ill. (some col.)
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Boomsma, Aaron Anno. (2010). A fundamental study of high pressure turbine blade trailing edge cooling: an experimental and numerical approach.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/102826.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.