Biogeochemical patterns and processes in buoyant, deep-sea hydrothermal plumes

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Biogeochemical patterns and processes in buoyant, deep-sea hydrothermal plumes

Published Date

2011-08-11

Publisher

Type

Presentation

Abstract

Along the global mid-ocean ridge, sub-seafloor hydrothermal circulation results in the exchange of heat and chemical species between seawater and the ocean crust. The resulting thermally and geochemically altered fluids are vented at the seafloor. The mixing of cold, oxic deep-ocean waters with hydrothermal fluids creates plumes with physically and chemically dynamic features. Hydrothermal plumes represent a globally distributed interface where marine hydrothermal circulation exerts its biogeochemical influence on elemental budgets of ocean basins. The goal of the present study is to describe the microbiological niches created by physical and geochemical gradients in plumes. One of our central hypotheses is that microorganisms respond to and alter the geochemistry of hydrothermal plumes. To achieve this goal and test our hypothesis, a field study was undertaken at the Eastern Lau Spreading Center (ELSC). While multiple vent sites along the ELSC are included in the larger study, here we report on an integrated, biogeochemical investigation of a single buoyant plume within ABE vent field. A series of replicate sample sets were collected by in situ filtration at 0.5m, 40m, 200m within a buoyant plume using the ROV JASON. Above plume background and near bottom background sample sets were also collected. Hydrothermal plume particles in sample replicates or splits have been queried for bulk geochemistry, particle-by-particle mineralogy, and microbial community composition. These three data streams are being evaluated individually to characterize the geochemical and microbiological changes throughout the plume with respect to above and below plume backgrounds. In addition, an iterative and integrated analysis is being used to compare: (1) calculated mineralogy to direct measurements; and (2) predicted energy yields from chemoautotrophy to observed microbial composition.

Description

Additional Contributors: Karthik Anantharaman; John A. Breier; Gregory J. Dick; Katrina J. Edwards; Peter R. Girguis; Jeffry V. Sorensen; Jason Sylvan; Brandy M. Toner (faculty mentor)

Related to

Replaces

License

Series/Report Number

Funding information

This research was supported by the Undergraduate Research Opportunities Program (UROP); the Gordon and Betty Moore Foundation; the National Science Foundation, Ridge 2000; Matthew Marcus and Sirine Fakra; the Advaced Light Source, U.S. Department of Energy, DE-AC02-05CH11231. Chief Scientists: Anna-Louise Reysenbach, Chuck Fisher, George Luther

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Wendt, Kathleen. (2011). Biogeochemical patterns and processes in buoyant, deep-sea hydrothermal plumes. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/115539.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.