Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes.
2011-03
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes.
Authors
Published Date
2011-03
Publisher
Type
Thesis or Dissertation
Abstract
Three-electrode bioreactors can be utilized to examine the mechanisms involved in electron flow from bacteria to insoluble electron acceptors and allow these processes to be analyzed quantitatively. As an electrode, gold is an ideal surface to study the electrophysiology occurring during extracellular respiration; yet previous research has shown that Shewanella is resistant to colonization on gold surfaces. Therefore, the goal of this work was to direct adhesion of Shewanella oneidensis to gold surfaces via cell surface display of a modified E. coli outer membrane protein, LamB, and a gold-binding peptide (5rGBP) to encourage microbe-electrode interaction, improve whole-cell biocatalytic systems, and increase overall current production. Expression of LamB-5rGBP increased the affinity of Shewanella for gold surfaces, but also led to the displacement of certain outer membrane components required for extracellular electron transport. Displacement of these outer membrane proteins decreased the rate at which Shewanella was able to reduce both insoluble iron and riboflavin. Expression of LamB-5rGBP, although effectively increasing attachment to gold, did not greatly increase current production in gold-electrode bioreactors.
Keywords
Description
University of Minnesota M.S. thesis. March 2011. Major: Microbial Engineering. Advisor: Gralnick, Jeffrey A. 1 computer file (PDF); vi, 46 pages.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Kane, Aunica L.. (2011). Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/104817.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.