Ecology and Evolution of Geographic Range Size Variation in North American Plethodontid Salamanders: Perspectives from Thermal Physiology

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Ecology and Evolution of Geographic Range Size Variation in North American Plethodontid Salamanders: Perspectives from Thermal Physiology

Published Date

2015-07

Publisher

Type

Thesis or Dissertation

Abstract

Species exhibit remarkable variation in geographic range size. Understanding the causes of this variation is fundamental to the fields of ecology and evolution, and is central to understanding how species will respond to rapid climate change. Using eastern North America's species-rich salamander fauna, I explore whether seasonal variation in temperature and climatic tolerance evolution underlie geographic range size variation (as per the climate variability hypothesis). First, I determined critical thermal maximum (CTMax) and critical thermal minimum (CTMin) temperatures of 18 salamander species. I then tested for relationships between thermal tolerances, seasonality, and geographic range size. Localities with greater annual temperature ranges (seasonality) were found to have individuals with broader thermal tolerances, and correspondingly species with larger latitudinal extents. Intraspecific tests, however, found only one of six wide-ranging species to relate thermal tolerances to environmental temperature changes across the range. Next, I estimated acclimation ability of salamanders to see if species with larger distributions have greater physiological plasticity. Salamanders were acclimated to 14 and 22�C and results of a phylogenetically controlled MCMCglmm model indicated that there are significant differences in temperature adjusted standard metabolic rates (SMRs) of species with wide versus narrow latitudinal extents. Wide-ranging species showed a slight increase in SMR after acclimation, whereas narrow-ranging species showed a statistically significant drop in SMR. These results indicate that wide-ranging species have a greater thermal acclimation capacity than narrow-ranging species. Finally, using GIS-based climate data I included all available locality points to estimate species-level thermal niche breadths. I found that CTMax and CTMin of species are strongly correlated with the maximum and minimum temperatures that occur within their geographic ranges. I also found that species' thermal tolerance breadths (CTMax) CTMin) are highly correlated with estimates of their thermal niche breadths. My general finding that wide-ranging species have broader physiological tolerances than narrow-ranging species supports key predictions of the climate variability hypothesis and the role of seasonality in the evolution of physiological traits. It also highlights the potential vulnerability of narrow-ranging montane salamanders.

Description

University of Minnesota Ph.D. dissertation. July 2015. Major: Conservation Biology. Advisor: Kenneth Kozak. 1 computer file (PDF); ix, 95 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Markle, Tricia. (2015). Ecology and Evolution of Geographic Range Size Variation in North American Plethodontid Salamanders: Perspectives from Thermal Physiology. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/175251.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.