Fundamentals of a systems biology approach to In Vitro tissue growth

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Fundamentals of a systems biology approach to In Vitro tissue growth

Published Date

2013-05

Publisher

Type

Thesis or Dissertation

Abstract

Tissue engineering needs a paradigm shift in order to generate clinically useful products. The field has yet to regularly produce implantable tissue-engineered products. The conventional manner in which input stimuli are applied without consideration of current cellular activity level is certainly suboptimal. The objective of this line of research is to produce a method for rationally choosing input stimuli that drive the cells toward optimal tissue growth. Transient phosphorylation of signaling proteins after a perturbation in stimuli contains biological information concerning downstream tissue growth. The overall project aims to build a statistical model predictive of tissue growth via information of the upstream phosphoproteome minutes after a change in stimuli. The validity of such a statistical model can be tested based on its utility to direct tissue growth: stimuli will be chosen on the basis of which corresponding phosphoproteome profile(s) is predicted to yield the best downstream tissue growth; this can be directly compared to conventional tissue engineering methods. This doctoral project focused on obtaining sample types and tailoring methods appropriate for a systems biology and statistical approach, especially in regard to the label-free quantification of phosphopeptide enrichments. Neonatal human dermal fibroblasts (nhDF) were expanded to near confluence, at which point basal medium for tissue production was applied. After two days, nhDF were perturbed with basal medium supplemented with 1 or 10 ng/mL TGF-β1. Cells were harvested at 10, 20, or 30 minutes for intracellular proteins. Resultant protein lysates were digested to peptides via trypsin and enriched for phosphopeptides via Iron Immobilized Metal Affinity Chromatography (IMAC). Phosphopeptide enrichments were analyzed by tandem mass spectrometry. A total of 1689 peptides were both identified with phosphorylation and quantified using distinct algorithms. Under strict statistical tests, 22 of these peptides were found to differ between treatments/time. Corresponding downstream collagen deposition was also found to differ between treatments. These results indicate that the type of quantitative data needed for the overall project can be acquired. The methods developed can be used in finding a statistical relationship between tissue growth and upstream phosphoproteome profiles.

Description

University of Minnesota Ph.D. dissertation. May 2013. Major: Biomedical Engineering. Advisor: Robert T. Tranquillo. 1 computer file (PDF); xii, 53 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Beck, Richard Joseph. (2013). Fundamentals of a systems biology approach to In Vitro tissue growth. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/152426.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.