Degradable Polymersomes for Targeted Drug Delivery

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Degradable Polymersomes for Targeted Drug Delivery

Published Date

2013-08

Publisher

Type

Thesis or Dissertation

Abstract

Chemotherapy today is often accompanied by major side effects due to delivery of toxic drugs to healthy tissue in addition to diseased cells. Targeted drug delivery offers the possibility of minimizing these side effects by specific delivery to cancer cells using targeted nanocarriers that enhance drug accumulation in tumors and facilitate target-specific cellular uptake. Polymersomes, vesicles self-assembled from polymeric amphiphiles, are an attractive targeted vehicle, as they are capable of encapsulating both hydrophobic and hydrophilic drugs, have lengthy circulation times in vivo, and can employ degradable functionality for triggered release of payload and clearance from the body. This thesis reports on efforts to enhance the capabilities of degradable polymersomes for targeted delivery. First, targeting functionality is incorporated into polymersomes of the block copolymer poly(ethylene oxide)-b-poly(γ-methyl-ε-caprolactone) by incorporating the reactive vinyl sulfone group into the amphiphile's hydrophilic terminus, allowing site-selective reaction with cysteine-functionalized targeting peptides following self-assembly. The performance of targeted delivery using this polymersome is then evaluated in vitro. Binding and delivery to model cell lines for targeted and bystander cells is tracked using nontargeted polymersomes and compared to that for polymersomes using a high- or low-affinity ligand. Polymer degradation is also tracked both in simple media and during cellular delivery. Finally, a new monomer is developed incorporating acid-labile acetal functionality into a cyclic polyester. The polymerization of this monomer to two distinct polymers is also characterized and the degradation behavior of both polymers evaluated.

Description

University of Minnesota Ph.D. dissertation. August 2013. Major: Material Science and Engineering. Advisors: Marc Hillmyer, Efrosini Kokkoli. 1 computer file (PDF); vii, 204 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Petersen, Matthew. (2013). Degradable Polymersomes for Targeted Drug Delivery. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/191471.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.