Exploring Mechanisms for the Evolution of One-Pixel-Attacks on Deep Neural Networks

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Exploring Mechanisms for the Evolution of One-Pixel-Attacks on Deep Neural Networks

Alternative title

Published Date

2021-05

Publisher

Type

Scholarly Text or Essay

Abstract

Recent studies from Su et al., (2019, and Nguyen, et al., 2015) have shown that Deep Neural Networks may have a weakness when it classifies an image. They have shown that when perturbing a single pixel in an image of size 32x32, they were able to significantly change the output of the neural network. To generate an attack, Nguyen et al. used an Evolutionary Strategy called Differential Evolution (DE). Evolutionary Strategies are algorithms that mimic biological genetic evolution. By using DE, they were able to conclude that it was a viable method in the generation of these attacks. In their research, they mentioned that future work could be devoted to looking at additional Evolutionary Strategies to increase the likelihood of successful attacks. Therefore, in this research, we extended Nguyen et al.’s work by using DE algorithms proposed from Qin and Suganthan called Adaptive Differential Evolution (AdaptiveDE) in one-pixel-attacks. Using this alternative algorithm we can generate more successful perturbations to increase the one-pixel-attack success rate.

Description

Advisor: Dr. Richard Maclin

Related to

Replaces

License

Series/Report Number

Funding information

University of Minnesota's Undergraduate Research Opportunities Program

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Hnatek, Joseph. (2021). Exploring Mechanisms for the Evolution of One-Pixel-Attacks on Deep Neural Networks. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/219588.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.