Excited state dynamics of metalloporphyrins utilized in optoelectronic devices
2013-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Excited state dynamics of metalloporphyrins utilized in optoelectronic devices
Authors
Published Date
2013-08
Publisher
Type
Thesis or Dissertation
Abstract
Energy consumption in the world is currently dominated by fossil fuels (85%) which include coal, gas, and oil while photovoltaics constitute a small portion (0.1%). The hotovoltaic market is primarily comprised of silicon based photovoltaics which are currently unable to compete with fossil fuels in cost per kilowatt hour. However, emerging organic photovoltaics (OPVs) have shown potential to be surpass silicon based photovoltaics and be cost competitive with fossil fuels. One of the limitations in OPVs is the short diffusion length (10 nm) relative to the absorbing layer thickness (100-200 nm). Porphyrins, of which chlorophylls are derivatives, remain at the forefront of OPV investigation due to their success in natural photosynthesis and potential in photovoltaic devices. Furthermore, platinum octaethyl porphyrin (PtOEP) has been estimated to have a diusion length between 18-30 nm and long triplet lifetime (100 microsecondss). This long diffusion length indicates that platinum porphyrins are able to efficiently funnel excitons to the interface, showing promise as suitable donor materials. Other porphyrins, such as nickel, palladium, tin, and indium show similar properties including strong absorption, enhanced excited state lifetimes, and charge separated states. This thesis investigates the excited state properties of porphyrin materials. Ultrafast pump probe spectroscopy allows for investigation of excited state dynamics including intramolecular energy transfer observed in nickel porphyrins. Femtosecond dynamics of palladium and platinum porphyrins are explored as well as triplet fusion in PtOEP neat films, providing a unique way to study energy transfer and amorphous films. Finally, pump probe studies aim to explain photoluminescent quenching behavior in tin and indium porphyrins through observation of charge separated states. Investigation of these
porphyrins is crucial to improving device efficiency through fundamental understanding of the excited state dynamics in films and neat films.
Keywords
Description
University of Minnesota Ph.D. dissertation. August 2013. Major: Chemical Physics. Advisor: David A. Blank. 1 computer file (PDF); xiii, 186 pages, appendix A.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Hinke, Jonathan Arthur. (2013). Excited state dynamics of metalloporphyrins utilized in optoelectronic devices. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/158327.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.