Insights into the hormonal regulation of nectar production and the biochemical characteristics of antimicrobial nectar proteins

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Insights into the hormonal regulation of nectar production and the biochemical characteristics of antimicrobial nectar proteins

Published Date

2021-12

Publisher

Type

Thesis or Dissertation

Abstract

Nectar is a complex, carbohydrate rich solution that facilitates important plant-biotic relationships. Of the utmost importance is nectars ability to effectively attract and manipulate pollinators to maximize plant reproductive success while deterring unwanted consumers that could be deleterious to a plant’s fecundity. Therefore, the regulation of nectar secretion during times of peak pollinator activity, as well as other essential plant reproductive processes, is essential. Very little is known about the detailed mechanisms of nectar regulation and whether these mechanisms are conserved in the plant kingdom. Through the examination of null alleles of JA biosynthesis and response genes in Arabidopsis, this report finds that the octadecanoid pathway plays an important role in nectar production. The nectar-less JA synthesis mutant aos-2 showed no auxin response in nectaries, but both nectar production and the auxin response were restored upon exogenous JA and auxin treatment. Cumulatively, these observations strongly suggest an indispensable role for an octadecanoic acid- and auxin-dependent, but JA- and COI1-dispensible, pathway in regulating nectar production in Arabidopsis. Another important aspect of nectar biology is the chemical constituents of nectar droplets. While sugars are the predominant solutes of nectar, non-sugar solutes have been shown to provide additional levels of functionality to nectar. Some of these non-sugar solutes include amino acids, lipids, ions, secondary metabolites and proteins. Nectars generally secrete small arrays of proteins. Because nectar is a nutrient dense solution, it must be protected against non-mutualistic consumers such as deleterious communities of microorganisms. Nectar proteins generally exhibit direct and indirect antimicrobial activity and are thought to serve as a defense mechanism for nectar. To this end, I characterized non-specific lipid transfer proteins (nsLTPs) that are secreted into the nectar of Arabidopsis (AZI7), Cucurbita pepo (CpLTP1.1), and Brassica rapa (BrLTP2.1). Broadly, these nectar specific nsLTPs appear to have strong antimicrobial activity, particularly against pathogenic plant fungi, are very heat stable, and have some capacity to bind free fatty acids. Overall, these data improve our understanding of the hormonal regulation of nectar and takes the initial steps to gaining broad insight to the biological function of nectar proteins.

Description

University of Minnesota Ph.D. dissertation.December 2021. Major: Plant and Microbial Biology. Advisor: Clay Carter. 1 computer file (PDF); vi, 168 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Schmitt, Anthony. (2021). Insights into the hormonal regulation of nectar production and the biochemical characteristics of antimicrobial nectar proteins. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/241712.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.