Characterization of Stormwater Particle Size Distribution and Sediment Concentrations through Evaluation of Manhole Sumps with SHSAM
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Characterization of Stormwater Particle Size Distribution and Sediment Concentrations through Evaluation of Manhole Sumps with SHSAM
Authors
Published Date
2020-03
Publisher
Type
Report
Abstract
Urban stormwater runoff contains sediment which pollutes water resources. Manhole sump structures
have been constructed in many cities to capture the sediment material, but removal of the captured
sediment has to be done for this system to be effective. Software is available to estimate sediment
build up and help predict maintenance needs, but the software requires inputs of stormwater sediment
concentration and stormwater sediment particle size distributions (PSDs). This study uses historical data
from the University of Minnesota Twin Cities Campus Water Utility and the City of St. Cloud Minnesota
maintenance records to calibrate the SHSAM model for stormwater runoff parameters. Assessment of
the maintenance activity has also been done to evaluate maintenance effectiveness.
Sediments in urban stormwater can be characterized using a NURP50 PSD, which will provide a
conservative estimate if you are using PSD for removal efficiency since finer particles settle slower and
are less often removed by treatment. We recommend using a coarser PSD’s with a D50 of 0.05mm to
0.1mm if you are using a PSD for estimating maintenance schedules and sediment removal amounts.
When using the SHSAM model, the sediment concentration value appears to be more sensitive than the
PSD input parameter.
We propose a sediment concentration of 400 mg/L be used for the SHSAM model or other calculations
as an average value, with a typical range of 250 mg/L to 450 mg/L. Variation occurs with watershed
characteristics and location and there is also variation in concentration with storm events.
Inspecting sump structures once per year with maintenance following inspections appears to result in
capture of half of the accumulated sediments, with approximately half of the sediments being lost from
flushing in intense storm events. Removal of the full sediment load captured appears possible if
cleanout activity occurs twice per year. There is 1.68 c.f. of sediment captured per drainage acre per
year with annual inspections followed by maintenance, while 3.08 c.f. of sediment is generated per acre
per year. The sump material volume per acre of drainage is 5.32 c.f. when including organic material.
The overall cost for stormwater sediment capture by sumps is approximately $600/CF.
Use of calibrated input parameters in calculations and models, such as those determined here result in
more accurate estimates of maintenance needs. Analysis of maintenance records also provides insight
into how effective the maintenance is and how it can be improved.
Keywords
Description
Related to
Replaces
License
Collections
Series/Report Number
Funding information
This project was supported by the Minnesota Stormwater Research and Technology Transfer
Program administered by the University of Minnesota Water Resources Center through an
appropriation from the Clean Water Fund established by Minnesota Clean Water Land and
Legacy Amendment and from the Minnesota Stormwater Research Council with financial
contributions from:
● Capitol Region Watershed District
● Comfort Lake-Forest Lake Watershed District
● Mississippi Watershed Management Organization
● Nine Mile Creek Watershed District
● Ramsey-Washington Metro Watershed District
● South Washington Watershed District
● City of Edina
● City of Minnetonka
● City of Woodbury, and
● Wenck Associates
● Minnesota Cities Stormwater Coalition
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Chapman, John A; Forman, M. Rebecca. (2020). Characterization of Stormwater Particle Size Distribution and Sediment Concentrations through Evaluation of Manhole Sumps with SHSAM. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/222257.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.