Spectral Properties of the SYK Model

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Spectral Properties of the SYK Model

Published Date

2018-05

Publisher

Type

Presentation

Abstract

The Sachedev-Ye-Kitaev model provides us with a new window on strongly interacting many-body systems. In particular, it is a variant of the two-body random ensemble which captures the main features of nuclear interactions. One of main successes of recent work on the SYK model is that it shows that the Bethe formula for the nuclear level density is a direct consequence of the conformal symmetry of the low-energy sector of this model. We study the spectrum of the q-body SYK model by means of the moment method, and have obtained analytical results for all moments up to order 1/ N^3 in the number of Majorana fermions N. We elucidate the structure of the moments and how they relate to the free energy including $1/q$ corrections. For fixed $q^2/N$, the spectral density is given by the weight function of the Q-Hermite polynomials, which for large $N$ and $q$ simplifies to $exp( -N arcsin^2(E/E_0) / q^2)$. This spectral form reproduces the free energy obtained by path integral methods in the same limit. From applications to nuclear physics, it is clear that the SYK model has to be chaotic, which is also one of the main reasons why it is of interest to black hole physics. We study the chaotic dynamics by means of the number variance and the closely related spectral form factor. We show that the asymptotic quadratic dependence of the number variance results in a $1/t^2$ peak of the spectral form factor for short times, while random matrix spectral statistics is found for longer time scales.

Description

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Verbaarschot, Jacobus. (2018). Spectral Properties of the SYK Model. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/197527.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.