MATLAB-Based Flight-Dynamics and Flutter Modeling of a Flexible Flying-Wing Research Drone
2015-05-19
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
MATLAB-Based Flight-Dynamics and Flutter Modeling of a Flexible Flying-Wing Research Drone
Authors
Published Date
2015-05-19
Publisher
Type
Working Paper
Abstract
A relatively low-order, linear dynamic model is developed for the longitudinal flight- dynamics analysis of a flexible, flying-wing research drone, and results are compared to previously published results. The model includes the dynamics of both the rigid-body and elastic degrees of freedom, and the subject vehicle is designed to flutter within its flight envelope. The vehicle of interest is a 12-pound unmanned, flying-wing aircraft with a wingspan of 10 ft. In the modeling, the rigid-body degrees of freedom (DOFs) are defined in terms of motion of a vehicle- fixed coordinate frame, as required for flight-dynamics analysis. As a result, the state variables corresponding to the rigid-body DOFs are identical to those used in modeling a rigid vehicle, and the additional states are associated with the elastic degrees of freedom. Both body-freedom and bending-torsion flutter conditions are indicated by the model, and it is shown that the flutter speeds, frequencies, and genesis modes suggested by this low-order model agree very well with the analytical predictions and flight-test results reported in the literature. The longitudinal dynamics of the vehicle are characterized by a slightly unstable Phugoid mode, a well-damped, pitch-dominated, elastic-short-period mode, and the stable or unstable aeroelastic modes. A classical, rigid-body, short-period mode does not exist.
Description
Related to
Replaces
License
Collections
Series/Report Number
Funding information
NASA NRA, "Lightweight Adaptive Aeroelastic Wing for Enhanced Performance Across the Flight Envelope," NRA NNX14AL36A, Mr. John Bosworth Technical Monitor.
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Schmidt, David. (2015). MATLAB-Based Flight-Dynamics and Flutter Modeling of a Flexible Flying-Wing Research Drone. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/172719.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.