Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Efficient inference algorithms for some probabilistic graphical models

2014-02
Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Efficient inference algorithms for some probabilistic graphical models

Published Date

2014-02

Publisher

Type

Thesis or Dissertation

Abstract

The probabilistic graphical model framework provides an essential tool to reason coherently from limited and noisy observations. The framework has been used in an enormous range of application domains, which include: natural language processing, computer vision, bioinformatic, robot navigation and many more. We propose several inference algorithms for some probabilistic graphical models. For Bayesian network graphical models, we focus on the problem of overlapping clustering, where a data point is allowed to belong to multiple clusters. We present an overlapping clustering algo- rithm based on multiplicative mixture models. We analyze a general setting where each component of the multiplicative mixture is from an exponential family, and present an efficient alternating maximization algorithm to learn the model and infer overlap- ping clusters. We also propose a Bayesian Overlapping Subspace Clustering (BOSC) model which is a hierarchical generative model for matrices with potentially overlapping uniform sub-block structures. The BOSC model can also handle matrices with missing entries. We propose an EM-style algorithm based on approximate inference using Gibbs sampling and parameter estimation using coordinate descent for the BOSC model. We propose an EM-style algorithm based on approximate inference using Gibbs sampling and parameter estimation using coordinate descent for the BOSC model. We also consider Markov random field graphical models and address the problem of maximum a posteriori (MAP) inference. We first show that the drought detection problem from the climate science domain can be formulated as a MAP inference problem and propose an automatic drought detection problem. We then present a parallel MAP inference algorithm called Bethe-ADMM based on two ideas: tree-decomposition of the graph and the alternating direction method of multipliers (ADMM). However, unlike the standard ADMM, we use an inexact ADMM augmented with a Bethe-divergence based proximal function, which makes each subproblem in ADMM easy to solve in parallel using the sum-product algorithm. We rigorously prove global convergence of Bethe-ADMM. The proposed algorithm is extensively evaluated on both synthetic and real datasets to illustrate its effectiveness. Further, the parallel Bethe-ADMM is shown to scale almost linearly with increasing number of cores.

Description

University of Minnesota Ph.D. dissertation. February, 2014. Major: Computer science. Advisor. Arindam Banerjee. 1 computer file (PDF); x, 131 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Fu, Qiang. (2014). Efficient inference algorithms for some probabilistic graphical models. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/162960.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.