Bespoke Processors for Embedded Systems and Secure Multi-Party Computation

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Bespoke Processors for Embedded Systems and Secure Multi-Party Computation

Alternative title

Published Date

2023-05

Publisher

Type

Thesis or Dissertation

Abstract

With transistor scaling nearing atomic dimensions and leakage power dissipation imposing strict energy limitations, it has become increasingly difficult to improve energy efficiency in modern processors without sacrificing performance and functionality. One way to avoid this tradeoff and reduce energy without reducing performance or functionality is to take a cue from application behavior and eliminate energy in areas that will not impact application performance. This approach is especially relevant in embedded systems, which often have ultra-low power and energy requirements and typically run a single application over and over throughout their operational lifetime. In such processors, application behavior can be effectively characterized and leveraged to identify opportunities for ''free'' energy savings. We find that in addition to instruction-level sequencing, constraints imposed by program-level semantics can be used to automate processor customization and further improve energy efficiency. This dissertation describes automated techniques to identify, form, propagate, and enforce application-based constraints in gate-level simulation to reveal opportunities to optimize a processor at the design level. While this can significantly improve energy efficiency, if the goal is truly to maximize energy efficiency, it is important to consider not only design-level optimizations but also architectural optimizations. That being said, architectural optimization presents several challenges. First, the symbolic simulation tool used to characterize gate-level behavior of an application must be written anew for each new architecture. Given the expansiveness of the architectural parameter space, this is not feasible. To overcome this barrier, we developed a generic symbolic simulation tool that can handle any design, technology, or architecture, making it possible to explore application-specific architectural optimizations. However, exploring each parameter variation still requires synthesizing a new design and performing application-specific optimizations, which again becomes infeasible due to the large architecture parameter space. Given the wide usage of Machine Learning (ML) for effective design space exploration, we sought the aid of ML to efficiently explore the architectural parameter space. We built a tool that takes into account the impacts of architectural optimizations on an application and predicts the architectural parameters that result in near-optimal energy efficiency for an application. This dissertation explores the objective, training, and inference of the ML model in detail. Bespoke processors are tailored for a particular application and provide significantly greater energy efficiency than a general-purpose architecture executing that application. Given the paramount importance of data, privacy, and security in today's data-driven landscape, we have tailored a bespoke domain-specific processor for Secure Multi-Party Computation (MPC). The MPC computing paradigm is fundamentally different than traditional general-purpose computing; it allows multiple parties to perform collaborative computations on shared data without revealing any of the private data that they own, demonstrating benefits in several application domains including machine learning, data analytics, and privacy preservation. Our bespoke MPC architecture encompasses a complete end-to-end solution, including the compiler and assembler, a new ISA, and the processor architecture. Our bespoke processor architecture addresses the bottlenecks of existing MPC systems and improves efficiency significantly, enabling the use of MPC in new applications where overheads were previously prohibitive.

Keywords

Description

University of Minnesota Ph.D. dissertation .May 2023. Major: Electrical/Computer Engineering. Advisor: John Sartori. 1 computer file (PDF); viii, 120 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Hegde, Shashank. (2023). Bespoke Processors for Embedded Systems and Secure Multi-Party Computation. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/259723.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.