Bayesian Modeling of Multi-Source Multi-Way Data

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Bayesian Modeling of Multi-Source Multi-Way Data

Published Date

2023-11

Publisher

Type

Thesis or Dissertation

Abstract

Biomedical research often involves data collected from multiple sources and these sources often have a multi-way (i.e.. multidimensional tensor) structure. Existing methods that can accommodate multi-source or multi-way data have various limitations on the exact structure of the data they are able to accommodate and in the type of predictions, if any, they are able to produce. Furthermore, few of these methods are able to handle data that are simultaneously multi-source and multi-way. We first introduce two such multi-source and multi-way datasets of molecular and hematological data from multiple sources, each measured over multiple developmental time points and in multiple tissues, as predictors of early-life iron deficiency (ID) in a rhesus monkey model. We describe preliminary analyses that were conducted on these datasets using existing methods. We then develop a Bayesian linear model that can perform prediction on a binary or continuous outcome and can accommodate data that are both multi-source and multi-way. We use a linear model with a low-rank structure on the coefficients to capture multi-way dependence and model the variance of the coefficients separately across each source to infer their relative contributions. Conjugate priors facilitate an efficient Gibbs sampling algorithm for posterior inference, assuming a continuous outcome with normal errors or a binary outcome with a probit link. Simulations demonstrate that our model performs as expected in terms of misclassification rates and correlation of estimated coefficients with true coefficients, with large gains in performance by incorporating multi-way structure and modest gains when accounting for differing signal sizes across the different sources. Moreover, it provides robust classification of ID monkeys for one of our motivating datasets. Finally, we propose a flexible method called Bayesian regression on numerous tensors (BRONTe) that can predict a continuous or binary outcome from data that are collected from an arbitrary number of sources with multi-way tensor structures of arbitrary, not necessarily equal, orders. Additionally, BRONTe is able to accommodate data where some sources partially share features within a dimension. Simulations show BRONTe to perform well at prediction when the data sources are of unequal dimensions. In an application to our other motivating dataset on multi-way measures of metabolomics and hematology parameters, BRONTe was capable of robust classification of early-life iron deficiency.

Description

University of Minnesota Ph.D. dissertation. November 2023. Major: Biostatistics. Advisor: Eric Lock. 1 computer file (PDF); xiii, 116 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Kim, Jonathan. (2023). Bayesian Modeling of Multi-Source Multi-Way Data. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/260129.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.