Aster Models with Random Effects via Penalized Likelihood
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Aster Models with Random Effects via Penalized Likelihood
Published Date
2012-10-09
Publisher
Type
Report
Abstract
This technical report works out details of approximate maximum likelihood estimation for aster models with random effects. Fixed and random effects are estimated by penalized log likelihood. Variance components are estimated by integrating out the random effects in the Laplace approximation of the complete data likelihood following Breslow and Clayton (1993), which can be done analytically, and maximizing the resulting approximate missing data likelihood. A further approximation treats the second derivative matrix of the cumulant function of the exponential family where it appears in the approximate missing data log likelihood as a constant (not a function of parameters). Then first and second derivatives of the approximate missing data log likelihood can be done analytically. Minus the second derivative matrix of the approximate missing data log likelihood is treated as approximate Fisher information and used to estimate standard errors.
Keywords
Description
Related to
Replaces
License
Collections
Series/Report Number
Technical Report
692
692
Funding information
School of Statistics, University of Minnesota
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Geyer, Charles J.; Ridley, Caroline E.; Latta, Robert G.; Etterson, Julie R.; Shaw, Ruth G.. (2012). Aster Models with Random Effects via Penalized Likelihood. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/135870.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.