Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Improving the Quality of Top-N Recommendation

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Improving the Quality of Top-N Recommendation

Published Date

2018-02

Publisher

Type

Thesis or Dissertation

Abstract

Top-N recommenders are systems that provide a ranked list of N products to every user; the recommendations are of items that the user will potentially like. Top-N recommendation systems are present everywhere and used by millions of users, as they enable them to quickly find items they are interested in, without having to browse or search through big datasets; an often impossible task. The quality of the recommendations is crucial, as it determines the usefulness of the recommender to the users. So, how do we decide which products should be recommended? Also, how do we address the limitations of current approaches, in order to achieve better quality? In order to provide insight into these problems, this thesis focuses on developing novel, scalable algorithms that improve the state-of-the-art top-N recommendation quality, while providing insight into the top-N recommendation task. The developed algorithms address some of the limitations of existent top-N recommendation approaches and can be applied to real-world problems and datasets. The main areas of our contributions are the following: 1. Exploiting higher-order sets of items: We investigate to what extent higher-order sets of items are present in real-world datasets, beyond pairs of items. We also show how to best utilize them to improve the top-N recommendation quality. 2. Estimating a global and multiple local models: We show that estimating multiple user-subset specific local models, beyond a global model significantly improves the top-N recommendation quality. We demonstrate this with both item-item models and latent space models. 3. Investigating and using the error: We investigate what are the properties of the error and how they correlate with the top-N recommendation quality, in methods that treat the missing entries as zeros. Then, we utilize the learned insights to develop a method, which explicitly uses the error. We have applied our algorithms to big datasets, with millions of ratings, that span different areas, such as grocery transactions, movie ratings, and retail transactions, showing significant improvements over the state-of-the-art.

Description

University of Minnesota Ph.D. dissertation. February 2018. Major: Computer Science. Advisor: George Karypis. 1 computer file (PDF); x, 103 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Christakopoulou, Evangelia. (2018). Improving the Quality of Top-N Recommendation. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/195398.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.