Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Population structure and persistence of Escherichia coli in ditch sediments and water in the Seven Mile Creek Watershed.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Population structure and persistence of Escherichia coli in ditch sediments and water in the Seven Mile Creek Watershed.

Published Date

2011-05

Publisher

Type

Thesis or Dissertation

Abstract

Escherichia coli is currently used as an indicator of fecal contamination in freshwater systems based on the assumption that it does not grow or survive outside of the host. However, recent studies have reported the growth and persistence of E. coli in various habitats such as soil, sands and sediments. While the majority of studies examining the growth and survival of E. coli in sediments have been performed primarily under laboratory conditions, there is, however, only limited field investigations concerning the growth and survival of this bacterium in sediments and its partitioning to overlaying water. Furthermore, the contributions of sediment adapted E. coli to water quality impairment in ditches or tile lines have not yet been assessed. Therefore, in this study, we examined the population structure of E. coli and determined whether ditch sediments can serve as reservoirs of environmental E. coli in the Seven Mile Creek (SMC) watershed, a minor watershed located in south central Minnesota. We also examined the potential factors that might influence the spatial and temporal distribution of E. coli populations present in the SMC watershed. Horizontal, fluorophore-enhanced, repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique (HFERP) was used to examine the population structure of E. coli in the SMC watershed, and host source-specific PCR assays targeting Bacteroidetes were used to identify potential host sources of fecal bacteria in the SMC watershed. Results of these studies indicated that seasonal variation in the population density of E. coli is likely influenced by parameters such as temperature and flow events (rainfall and runoff events). Furthermore, we report that despite an annual shift in population structure, viable E. coli strains were isolated repeatedly from temperate ditch sediments and water across all three years. Therefore, sites likely contain a mixture of newly acquired and resident E. coli strains. HFERP fingerprint analyses indicated that the resident strains were likely growing in sediments and surviving through the winter freeze-thaw cycles. Sediment-borne E. coli strains had HFERP DNA fingerprints that were unique to this location and distinct from known sources of E. coli (from fecal origin), suggesting that these E. coli strains became naturalized to the SMC sediments. Furthermore, multivariate analysis of variance (MANOVA) indicated that there was mixing of bacteria between sites during flow conditions, which likely influenced the distribution and mobility of naturalized E. coli within the watershed. Additionally, mixing occurred between the sediment and water column, and this may have resulted in the re-suspension of sediment-borne naturalized E. coli into the overlaying water, leading to an apparent increase in the observed levels of E. coli. These results suggest that ditch sediments are temporal sinks of E. coli and that these indigenous populations might contribute significantly to population levels of E. coli measured in water quality studies. This confounds the use of E. coli as an indicator of fecal contamination of waterways, and has implications for future water quality monitoring and TMDL determinations.

Keywords

Description

University of Minnesota M.S. thesis. May 2011. Advisor: Dr. Michael J. Sadowsky. 1 computer file (PDF); ix, 83 pages. Major: Microbial engineering.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Chandrasekaran, Ramyavardhanee. (2011). Population structure and persistence of Escherichia coli in ditch sediments and water in the Seven Mile Creek Watershed.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/108879.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.