Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Convective assembly of nanoparticles into thin structured films.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Convective assembly of nanoparticles into thin structured films.

Published Date

2010-05

Publisher

Type

Thesis or Dissertation

Abstract

Convective nanoparticle film assembly is a process whereby particles from dilute liquid suspension assemble onto a substrate. Assembly occurs at the suspension-substrate-air contact line, where particles are carried toward it by convective currents set up in the meniscus region due to liquid evaporation. In the past, convectively assembled nanosphere films have been shown to be highly ordered. Convective assembly is initially explored as a potential method for the fabrication of ``tiled'' (uniformly oriented) nanocrystal films for application in zeolite membrane technology. It is found that films are generally assembled into jumbled multilayers, and that they are often nonuniform in coverage, sometimes leaving large areas of bare substrate in a banded pattern. Nevertheless, particles are shown quantitatively to be preferentially oriented, and some regions of the films do exhibit the desired ``tiled'' arrangement. A convective assembly apparatus is introduced as an experimental platform for further investigation of the method as a practicable one for large-scale production of thin particle films in general, and zeolite membrane precursor films in particular. The apparatus performance and final film characteristics are explored using a model silica nanosphere system. Monolayer film assembly turns out to be possible but difficult, with discrete banded film patterns being common in both sub-monolayer and super-monolayer films. The regularity and repeatability of these banded films are, however, very high. The wavelength of the banded film patterns (specifically, inter-band spacing) are shown to be strongly dependent on particle size in sub-monolayer films. The relationship is investigated by experiment, and modeled using a simple geometric exclusion argument based on the liquid meniscus profile described by the Young-Laplace equation. The model implies that band wavelength should also be dependent on the thickness of the films in super-monolayer films. The above model makes unrealistic assumptions about the liquid meniscus during convective assembly, namely that the system is static. Thus, the final topic is to attempt an extension of the model by including liquid flow. This quantitatively refines the meniscus geometry and allows a wider range of predictions of band spacing, although it seems to be far from the last word on modeling the banding phenomenon.

Description

University of Minnesota Ph.D. dissertation. May 2010. Major: Chemical Engineering. Advisor: ProfessorMichael Tsapatsis. 1 computer file (PDF); xii, 203 pages, appendices A-D.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Lee, Jun Alexander. (2010). Convective assembly of nanoparticles into thin structured films.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/92226.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.