A framework for the multilevel integration of molecular, clinical, and population data in the context of breast cancer: challenges and considerations of socioecological conditions and pharmacogenomics
2015-01
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
A framework for the multilevel integration of molecular, clinical, and population data in the context of breast cancer: challenges and considerations of socioecological conditions and pharmacogenomics
Authors
Published Date
2015-01
Publisher
Type
Thesis or Dissertation
Abstract
Despite medicine's rigorous pace of advancement, clinical research remains limited by scalability and portability issues. As we think about the needs of cancer epidemiology, we see the need for multilevel modeling powered by scalable and portable informatics-driven approaches. Of novelty in this dissertation is the `Multilevel Framework for Translational Informatics' that enabled pursuit of a line of scientific inquiry regarding the pharamacogenomics and pharmacoepidemiology of metformin in breast cancer and type 2 diabetes mellitus (T2DM). Metformin is an oral biguanide and is a widely prescribed anti-diabetic medication that is considered to be a first-line treatment for T2DM. While metformin is generally well tolerated it displays wide variation in efficacy and rare adverse reactions; its pharmacogenomics are not clearly understood. Due to the epidemic growth of T2DM in the US and the accumulating evidence highlighting potential repurposing of metformin for cancer prevention and treatment it is imperative to understand molecular mechanisms and clinical impacts of metformin. Further, in order to appropriately separate effects due to metformin and breast cancer from social stress, a known modifier of breast cancer biology, it is necessary to incorporate these characteristics into the model in a way that does not lead to overfitting. To highlight this framework I presented my work in three parts: 1) metformin and insulin pharmacoepidemiology, which as a baseline operated on clinical data only; 2) the modifying impact of socioecological context on breast cancer prevalence, which integrated population measures into clinical context; and finally, 3) translational biomedical informatics of metformin pharmacogenomics, which integrated molecular variation within clinical context. While this work elucidated aspects of metformin pharmacogenomics, it primarily aimed to demonstrate the utility of this framework for integrating multilevel data into future cancer epidemiology and translational biomedical informatics research. As we now see the field of biomedical informatics approaching data mining and data science we see a tantalizing opportunity for utilizing and advancing techniques such as these to power clinical research.
Keywords
Description
Unifversity of Minnesota Ph.D. dissertation. January 2015. Major: Health Informatics. Advisors: David S. Pieczkiewicz, PhD.
Jyotishman Pathak, PhD. 1 computer file (PDF); vi, 86 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Breitenstein, Matthew K.. (2015). A framework for the multilevel integration of molecular, clinical, and population data in the context of breast cancer: challenges and considerations of socioecological conditions and pharmacogenomics. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/170921.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.