Persistency of Excitation, Nonlinear Function Approximation, and Stochastic Contraction Analysis for Learning in Model Reference Adaptive Control
2023-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Persistency of Excitation, Nonlinear Function Approximation, and Stochastic Contraction Analysis for Learning in Model Reference Adaptive Control
Authors
Published Date
2023-08
Publisher
Type
Thesis or Dissertation
Abstract
Machine learning has achieved unprecedented levels of success recently, in the areas of language processing and modeling, image and video classification and generation, and recommendation and dynamic pricing systems. The control of dynamic systems has also benefited from these advancements in learning, particularly in the areas of reinforcement learning for tasks such as robotic navigation and control of nuclear fusion processes. We wish to study learning in another area where it can naturally be applied: adaptive control systems. These systems must estimate and identify uncertainties in the plant inorder to apply their adaptive control laws. We study the areas of stochastic contraction and convex projection, persistency of excitation, and function approximation, with an eye towards this application. The first part of the thesis is motivated by the problem of quantitatively bounding the convergence of adaptive control methods for stochastic systems to a stationary distribution. Such bounds are useful for analyzing statistics of trajectories and determining appropriate step sizes for simulations. To this end, we extend a methodology from (unconstrained) stochastic differential equations (SDEs) which provides contractions in a specially chosen Wasserstein distance. This theory focuses on unconstrained SDEs with
fairly restrictive assumptions on the drift terms. Typical adaptive control schemes place constraints on the learned parameters and their update rules violate the drift conditions. To this end, we extend the contraction theory to the case of constrained systems represented by reflected stochastic differential equations and generalize the allowable drifts. We show how the general theory can be used to derive quantitative contraction bounds on a nonlinear stochastic adaptive regulation problem.
ivThe second part of the thesis defines geometric criteria which are then used to establish sufficient conditions for persistency of excitation with vector functions constructed from single hidden-layer neural networks with step or ReLU activation functions. We show that these conditions hold when employing reference system tracking, as is commonly done in adaptive control. We demonstrate the results numerically on a system with linearly parameterized activations of this type and show that the parameter estimates converge to the true values with the sufficient conditions met. The third part of the thesis studies function approximation. Classical results in neural network approximation theory show how arbitrary continuous functions can be approximated by networks with a single hidden layer, under mild assumptions on the activation function. However, the classical theory does not give a constructive means to generate the network parameters that achieve a desired accuracy. Recent results have demonstrated that for specialized activation functions, such as ReLUs, high accuracy can be achieved via linear combinations of randomly initialized activations. These recent works utilize specialized integral representations of target functions that depend on the specific activation functions used. This paper defines mollified integral representations, which provide a means to form integral representations of target functions using activations for which no direct integral representation is currently known. The new construction enables approximation guarantees for randomly initialized networks
using any activation for which there exists an established base approximation which may not be constructive. We extend the results to the supremum norm and show how this enables application to an extended, approximate version of (linear) model reference adaptive control.
Description
University of Minnesota Ph.D. dissertation. August 2023. Major: Electrical/Computer Engineering. Advisor: Andrew Lamperski. 1 computer file (PDF); xi, 148 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Lekang, Tyler. (2023). Persistency of Excitation, Nonlinear Function Approximation, and Stochastic Contraction Analysis for Learning in Model Reference Adaptive Control. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/259758.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.