Unsupervised Learning Based Distributed Detection of Global Anomalies
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Unsupervised Learning Based Distributed Detection of Global Anomalies
Published Date
2008-07-18
Publisher
Type
Report
Abstract
Anomaly detection has recently become an important problem in many industrial and financial applications. Very often, the databases from which anomalies have to be found are located at multiple local sites and cannot be merged due to privacy reasons or communication overhead. In this paper, a novel general framework for distributed anomaly detection is proposed. The proposed method consists of three steps: (i) building local models for distributed data sources with unsupervised anomaly detection methods, (ii) transforming local models into uniform models, and (iii) reusing learned models for new data and combining their results by considering both quality and diversity of them to detect anomalies in a global view. In experiments performed on several synthetic and real life large data sets, the proposed distributed anomaly detection method achieved prediction performance comparable or even slightly better than the global anomaly detection algorithm applied on the data set obtained when all distributed data sets were merged.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 08-023
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Zhou, Junlin; Lazarevic, Aleksandar; Hsu, Kuo-Wei; Srivastava, Jaideep. (2008). Unsupervised Learning Based Distributed Detection of Global Anomalies. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215766.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.