Inverse Design of Soft Robotic Actuators using Nonlinear Finite Element Modeling

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Inverse Design of Soft Robotic Actuators using Nonlinear Finite Element Modeling

Published Date

2019-11

Publisher

Type

Thesis or Dissertation

Abstract

The field of soft robotics has empowered robots to maneuver, traverse, and complete tasks where traditional rigid robots fall short. These robots are able to bend continuously and conform to their environments which makes their designs inherently safe. This makes soft robots a suitable candidate for use in medical devices. This thesis explores an inverse soft robot design algorithm, with possible future applications to a soft catheter robot. Soft robot techniques were used to create a large scale prototype of a hydraulically powered, serial, soft catheter robot. The locomotion section of this robot consisted of three fiber reinforced elastomeric enclosures (FREE) actuators connected by passive valves. When controlled properly, the locomotion section was able to ‘inchworm’ through a tube, thus demonstrating the feasibility of a serially controlled catheter. Although the FREE actuators were able to produce locomotion in the tube, the limitation of realizable actuator shapes severely hampered the robot's performance. This limitation motivated the need for a generalized design tool where the user could dictate the desired actuator shapes. To accomplish the additional design freedom, an inverse problem was explored. First, a mathematical description of cylindrical actuator shapes was developed. Allowing a user to create arbitrary actuator shapes that deformed from an initial state to a final state. Next, a nonlinear inverse Finite Element Modeling optimization algorithm was developed to reconstruct the material properties when the boundary conditions and internal pressure were known. The inverse algorithm was tested on three cylindrical actuator motions. The first was a ballooning actuator which expanded uniformly in every direction. The second was a bending actuator capable of rotation constrained to a single plane. The third was a twisting actuator that rotated along its axis in a nearly pure shear translation, transforming a pressure input into out of plane motion. The material properties of all three actuator motions were successfully reconstructed with the developed inverse algorithm. The reconstructed twisting actuator was then 3D printed with a multi-material polyjet 3D printer and experimentally shown to match the twist of both the ground truth design and simulated results. This provided some initial validation of the inverse algorithm.

Description

University of Minnesota Ph.D. dissertation. November 2019. Major: Mechanical Engineering. Advisors: Timothy Kowalewski, James Van de Ven. 1 computer file (PDF); xii, 173 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

https://doi.org/10.13020/0SHQ-C829

Previously Published Citation

Other identifiers

Suggested citation

Gilbertson, Mark. (2019). Inverse Design of Soft Robotic Actuators using Nonlinear Finite Element Modeling. Retrieved from the University Digital Conservancy, https://doi.org/10.13020/0SHQ-C829.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.