Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy

Published Date

1997

Publisher

Journal of Geophysical Research (American Geophysical Union)

Type

Article

Abstract

Magnetic domain and domain wall structures in pseudo-single-domain grains (5–20 μm) of magnetite (Fe3O4) were studied using magnetic force microscopy. Many of the observed micromagnetic features can be explained by the magnetostatic effects of surfaces and grain edges and interactions within and between walls. Domain walls were frequently subdivided into 1–3 opposite polarity segments separated by Bloch lines, although some walls contained no Bloch lines. Subdivided walls display a characteristic zigzag structure along the easy axis direction, where zigzag angles can be as high as 20°–40°. The zigzagging structure, in addition to wall segmentation, further minimizes the magnetostatic energy of the walls. Bloch lines can be (de)nucleated during wall displacement or after repeated alternating field (AF) demagnetization. Within individual walls, the number of Bloch lines and their pinning locations were found to vary after repeated AF demagnetization demonstrating that walls, like individual grains, can exist in several different local energy minima. The number of Bloch lines appears to be independent of domain state, but frequently the polarity of the wall was coupled with the direction of magnetization in the adjoining domains, such that wall polarity alternates in sign between adjacent walls across an entire grain. Even after the domain magnetization is reversed, the same sense of wall chirality is maintained across the grain producing unique grain chiralities. For one particular grain it was possible to reconfigure a likely three-dimensional (3-D) domain structure. The body and surface structures result primarily from a combined volume magnetostatic interaction between all grain surfaces and magnetocrystalline anisotropy. Finally, commonly observed open-flux features within the interior of grains or along grain edges terminating planar domains are inconsistent with the prediction of edge closure domain formation based on recent 2-D micromagnetic models. Our observations suggest that 3-D micromagnetic models are required to model results even for grains larger than 1 μm.

Description

Related to

Replaces

License

Series/Report Number

Funding information

This work was supported by NSF grants EAR-9304520 and EAR-9526812. The Institute for Rock Magnetism is supported by grants from Keck Foundation and NSF. This is contribution 9705 of the Institute for Rock Magnetism

Isbn identifier

Doi identifier

10.1029/97JB01856

Previously Published Citation

Pokhil, T. G. and B. M. Moskowitz (1997). "Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy." Journal of Geophysical Research B: Solid Earth 102(B10): 22,681-22,694

Suggested citation

Pokhil, Taras; Moskowitz, Bruce. (1997). Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. Retrieved from the University Digital Conservancy, 10.1029/97JB01856.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.