Phosphorylated and SUMO-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression.
2012-07
Loading...
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Phosphorylated and SUMO-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression.
Authors
Published Date
2012-07
Publisher
Type
Thesis or Dissertation
Abstract
Introduction: Progesterone receptors (PR) are emerging as important breast cancer drivers.
Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in
part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294
by MAPK and CDK2. Phospho-Ser294 PRs are resistant to ligand-dependent Lys388
SUMOylation (i.e. a repressive modification). Antagonism of PR SUMOylation by mitogenic
protein kinases provides a mechanism for derepression (i.e. transcriptional activation) of
target genes. As a broad range of PR protein expression is observed clinically, a PR gene
signature would provide a valuable marker of PR contribution to early breast cancer
progression.
Methods: Global gene expression patterns were measured in T47D and MCF-7 breast cancer
cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient)
PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment
of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by MTT
and western blotting. Finally, human breast tumor cohort datasets were probed to identify
PR-associated gene signatures; metagene analysis was employed to define survival rates in
patients whose tumors express a PR gene signature.
Results: “SUMO-sensitive” PR target genes (i.e. repressed by PR SUMOylation) primarily
include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R
receptors are preferentially recruited to enhancer regions of derepressed genes (i.e. MSX2,
RGS2, MAP1A, and PDK4) along with the steroid receptor coactivator, CBP, and MLL2, a
histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks
these events, suggesting that SUMO modification of PR prevents interactions with
mediators of early chromatin remodeling at “closed” enhancer regions. SUMO-deficient
(phospho-Ser294) PR gene signatures are significantly associated with ERBB2-positive
luminal breast tumors and predictive of early metastasis and shortened survival. Treatment
with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR targetgenes
and inhibited proliferation in BT-474 (ER+/PR+/ERBB2+) breast cancer cells.
Conclusions: We conclude that reversible PR SUMOylation/deSUMOylation profoundly
alters target gene selection in breast cancer cells. Phosphorylation-induced PR
deSUMOylation favors a permissive chromatin environment via recruitment of CBP and
MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (i.e. derepressed)
phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin. Supplementary files: The supplementary files presented in this dissertation are fully
described in the appendices. They include: (A) Antibodies used in this study, (B) PCR primer
sets used in this study, (C) Genes differentially regulated by wild-type and SUMO-deficient
PR, (D) Overlapping lists of PR-dependent target genes from previously described gene
expression microarrays, (E) The PR ligand-dependent (LD) and ligand-independent (LI)
KR>WT gene signatures, (F) Breast tumor Oncomine concepts associated with the LD
KR>WT gene signature.
Description
University of Minnesota Ph.D. dissertation. July 2012. Major: Molecular, Cellular, Developmental Biology and Genetics. Advisors:Carol A. Lange, Ph.D. and David A. Largaespada, Ph.D. 1 computer file (PDF); xii, 154 pages, appendices A-F.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Knutson, Todd Philip. (2012). Phosphorylated and SUMO-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/133773.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.