Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Terrestrial and Aquatic Nitrous Oxide Emissions

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Terrestrial and Aquatic Nitrous Oxide Emissions

Published Date

2016-08

Publisher

Type

Thesis or Dissertation

Abstract

Agriculture represents the largest source of anthropogenic nitrous oxide (N2O), a potent greenhouse gas and the dominant ozone depleting substance. Globally, the magnitude of this source is well constrained; however, large uncertainties remain at regional-scales where the development of scalable mitigation practices and policies are needed. Therefore, this thesis sought to: 1) Quantify the strength of N2O emissions linked to nitrate (NO3-) runoff and revise regional budgets accordingly; and, 2) Identify the underlying mechanisms that control terrestrial and aquatic emissions in order to help guide N2O mitigation practices. The data and analyses indicated that agricultural rivers in the U.S. Corn Belt are significant sources of N2O to the atmosphere. A large bias (9-fold) in the Intergovernmental Panel on Climate Change N2O emission accounting methodology associated with river emissions (EF5r) was identified. Using a novel gas equilibration technique, stream water N2O:NO3- ratios followed a Michaelis-Menten type relation, reaching maximum values of 4.6-times ambient saturation. This response, attributed to environmental limits on in-situ production, implies that greater NO3- concentrations will have a progressively weaker effect on N2O emissions in the Mississippi River. However, based on future NO3- runoff scenarios, these analyses project that emissions could still increase by as much as 40%. Although innovative farming techniques, such as leguminous kura clover living mulches, could curtail NO3- losses and concurrent aquatic N2O emissions, experimental evidenced based on this research showed that they stimulate soil emissions. Although soils are the largest individual source, the magnitude and importance of emission “hotspots” remains unclear. Here, field-scale N2O emissions hotspots were identified using geospatial techniques and were consistently observed in low-lying areas prone to moisture and nutrient accumulation. These analyses indicated that targeted management of hotspots could reduce emissions by as much as 17%. The findings presented here provide a roadmap for policy makers and farm managers to proactively address and mitigate agricultural N2O emissions.

Description

University of Minnesota Ph.D. dissertation. August 2016. Major: Land and Atmospheric Science. Advisor: Timothy Griffis. 1 computer file (PDF); x, 115 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Turner, Peter. (2016). Terrestrial and Aquatic Nitrous Oxide Emissions. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/183323.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.