Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Symmetries of tensors

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Symmetries of tensors

Published Date

2009-09

Publisher

Type

Thesis or Dissertation

Abstract

This thesis studies the symmetries of a fixed tensors by looking at certain group representations this tensor generates. We are particularly interested in the case that the tensor can be written as v 1 ⊗ · · · ⊗ v n , where the v i are selected from a complex vector space. The general linear group representation generated by such a tensor contains subtle information about the matroid M ( v ) of the vector configuration v 1 , · · ·, v n . To begin, we prove the basic results about representations of this form. We give two useful ways of describing these representations, one in terms of symmetric group representations, the other in terms of degeneracy loci over Grassmannians. Some of these results are equivalent to results that have appeared in the literature. When this is the case, we have given new, short proofs of the known results. We will prove that the multiplicities of hook shaped irreducibles in the representation generated by v 1 ⊗ · · · ⊗ v n are determined by the no broken circuit complex of M ( v ). To do this, we prove a much stronger result about the structure of vector subspace of Sym V spanned by the products Π i∈S v i , where S ranges over all subsets of [ n ]. The result states that this vector space has a direct sum decomposition that determines the Tutte polynomial of M ( v ). We will use a combinatorial basis of the vector space generated the products of the linear forms to completely describe the representation generated by a decomposable tensor when its matroid M ( v ) has rank two. Next we consider a representation of the symmetric group associated to every matroid. It is universal in the sense that if v 1 , . . . , v n is a realization of the matroid then the representation for the matroid provides non-trivial restrictions on the decomposition of the representation generated by the tensor product of the vectors. A complete combinatorial characterization of this representation is proven for parallel extensions of Schubert matroids. We also describe the multiplicity of hook shapes in this representation for all matroids. The contents of this thesis will always be freely available online in the most current version. Simply search for my name and the title of the thesis. Please do not ever pay for this document.

Description

University of Minnesota Ph.D. dissertation. September 2009. Major: Mathematics. Advisor: Professor Victor Reiner. 1 computer file (PDF); vii, 98 pages, appendices A-C.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Berget, Andrew Schaffer. (2009). Symmetries of tensors. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/56390.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.