Plug-in hybrid electric vehicles as a source of distributed frequency regulation.
2009-09
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Plug-in hybrid electric vehicles as a source of distributed frequency regulation.
Alternative title
Authors
Published Date
2009-09
Publisher
Type
Thesis or Dissertation
Abstract
The movement to transform the North American power grid into a smart grid may be
accomplished by expanding integrated sensing, communications, and control
technologies to include every part of the grid to the point of end-use. Plug-in hybrid
electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while
they are plugged-in. With large numbers of PHEV and the communications and sensing
associated with the smart grid, PHEV could provide ancillary services for the grid.
Frequency regulation is an ideal service for PHEV because the duration of supply is short
(order of minutes) and it is the highest priced ancillary service on the market offering
greater financial returns for vehicle owners.
Using Simulink a power system simulator modeling the IEEE 14 Bus System was
combined with a model of PHEV charging and the controllers which facilitate vehicle-togrid
(V2G) regulation supply. The system includes a V2G controller for each vehicle
which makes regulation supply decisions based on battery state, user preferences, and the
recommended level of supply. A PHEV coordinator controller located higher in the
system has access to reliable frequency measurements and can determine a suitable local
automatic generation control (AGC) raise/lower signal for participating vehicles.
A first step implementation of the V2G supply system where battery charging is
modulated to provide regulation was developed. The system was simulated following a
step change in loading using three scenarios:
1. Central generating units provide frequency regulation,
2. PHEV contribute to primary regulation analogous to generator speed governor control, and 3. PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error
(ACE) compared to the base case.
Unique contributions resulting from this work include:
• Studied PHEV energy systems and limitations on battery charging/discharging,
• Reviewed standards for interconnection of distributed resources and electric
vehicle charging [1], [2],
• Explored strategies for distributed control of PHEV charging,
• Developed controllers to accommodate PHEV regulation, and
• Developed a simulator combining a power system model and PHEV/V2G components.
Description
University of Minnesota Ph.D. dissertation. September 2009. Major: Electrical Engineering. Advisors: S. Massoud Amin, Bruce F. Wollenberg. 1 computer file (PDF) xiii, 136 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Mullen, Sara Kathryn. (2009). Plug-in hybrid electric vehicles as a source of distributed frequency regulation.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/56792.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.