Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Distant-supervised algorithms with applications to text mining, product search, and scholarly networks

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Distant-supervised algorithms with applications to text mining, product search, and scholarly networks

Published Date

2020-11

Publisher

Type

Thesis or Dissertation

Abstract

In recent times, data has become the lifeblood of pretty much all businesses. As such, the real-world impact of data-driven machine learning has grown in leaps and bounds. It has set up itself as a standard tool for organizations to draw insights from the data at scale, and hence, to enhance their profits. However, one of the key-bottlenecks in deploying machine learning models in practice is the unavailability of labeled training data. The manually-labeled training sets are expensive and it can be a tedious exercise to create them. Besides, they cannot be practically reused for new objectives, if the underlying distribution of data changes with time. As such, distant-supervision provides a solution to using expensive hand-labeled datasets, which means leveraging alternative sources of weak-supervision. In this thesis, we identify and provide solutions to some of the challenges that can benefit from distant-supervised approaches. First, we present a distant-supervised approach to accurately and efficiently estimate a vector representation for each sense of the multi-sense words. Second, we present approaches for distant-supervised text-segmentation and annotation, which is the task of associating individual parts in a multilabel document with their most appropriate class labels. Third, we present approaches for query understanding in product search. Specifically, we developed distant-supervised solutions to three challenges in query understanding: (i) when multiple terms are present in a query, determining the relevant terms that are representative of the query’s product intent, (ii) vocabulary gap between the terms in the query and the product’s description, and (iii) annotating individual terms in a query with the corresponding intended product characteristics (product type, brand, gender, size, color, etc.). Fourth, we present approaches to estimate content-aware bibliometrics to accurately quantitatively measure the scholarly impact of a publication. Our proposed metric assigns content-aware weights to the edges of a citation network, that quantify the extent to which the cited-node informs the citing-node. Consequently, this weighted network can be used to derive impact metrics for the various involved entities, like the publications, authors, etc.

Description

University of Minnesota Ph.D. dissertation. November 2020. Major: Computer Science. Advisor: George Karypis. 1 computer file (PDF); 156 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Manchanda, Saurav. (2020). Distant-supervised algorithms with applications to text mining, product search, and scholarly networks. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/218043.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.