Design and synthesis of polyketide-based labels for polyketide synthase thioesterase and ketoreductase domains

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Design and synthesis of polyketide-based labels for polyketide synthase thioesterase and ketoreductase domains

Published Date

2010-10

Publisher

Type

Thesis or Dissertation

Abstract

Polyketides are a diverse class of natural products with a wide range of biological and pharmacological activities. Polyketides are biosynthesized by modular multienzyme complexes, polyketide synthases (PKSs), through sequential condensation of simple carboxylic acid building blocks. Due to multi-drug resistant bacteria becoming a growing public health problem, there is increased interest to exploit these systems to produce novel molecules and drug leads through combinatorial biosynthesis; however, determining substrate selectivity or stereospecificity is crucial for understanding PKS catalytic domains. Of recent interest have been the thiosesterase (TE) enzyme domain, which is responsible for transesterification reactions and cyclization, and the ketoreductase (KR) enzyme domain, which controls the stereochemistry in the reduction pathway where the รข-ketone moiety of a polyketide is converted into an alcohol. TE and KR crystal structures have been solved and now interest in harnessing their chemical potential is being explored. Several groups have embarked upon the challenge of engineering PKS for combinatorial biosynthesis. Their efforts have ranged from genetic engineering and heterologous expression to understanding the structure and function of modular PKSs; however, a lack of structure-based understanding for substrate specificity for nearly all of the catalytic domains creates several challenges for the use of PKSs in combinatorial biosynthesis. The objective of this research is to design polyketide-based labels in order to understand this relationship. Initial studies carried out by our lab provided structural and mechanistic insights towards engineering Pik TE for combinatorial biosynthesis; however, more information is needed, due to Pik TE structure-based dependence, to determine whether macrolactonization or hydrolytic activity will be observed. Therefore, here we present the successful design and synthesis of polyketide-based labels for studies with the TE and KR domains. The goals of this research can be divided in two parts: chloromethylketone affinity labels were design and synthesized for PKS TE domains, and CoA-analogs were synthesized through modification of CoA with chloromethylketones and vinylketones for PKS ACP-containing didomains, specifically KR-ACP and ACP-TE didomains. We observed the successful labeling of KR-ACP and ACP-TE didomains and co-crystallization trials are still on-going.

Description

University of Minnesota Ph.D. dissertation. October, 2010. Major: Chemistry. Advisors: Dr. Mark D. Distefano, Dr. Robert A. Fecik. 1 computer file (PDF); xi, 134 pages, appendices p. 98-134.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Leggans, Erick K.L.S.. (2010). Design and synthesis of polyketide-based labels for polyketide synthase thioesterase and ketoreductase domains. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/100272.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.