The spectral signature of wind turbine wake meandering: a wind tunnel and field-scale study
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
The spectral signature of wind turbine wake meandering: a wind tunnel and field-scale study
Published Date
2018-04-06
Publisher
Wiley
Type
Article
Abstract
Field-scale and wind tunnel experiments were conducted in the 2D to 6D turbine wake region to investigate the effect of geometric and Reynolds number scaling on wake meandering. Five field deployments took place: 4 in the wake of a single 2.5-MW wind turbine and 1 at a wind farm with numerous 2-MW turbines. The experiments occurred under near-neutral thermal conditions. Ground-based lidar was used to measure wake velocities, and a vertical array of met-mounted sonic anemometers were used to characterize inflow conditions. Laboratory tests were conducted in an atmospheric boundary layer wind tunnel for comparison with the field results. Treatment of the low-resolution lidar measurements is discussed, including an empirical correction to velocity spectra using colocated lidar and sonic anemometer. Spectral analysis on the laboratory- and utility-scale measurements confirms a meandering frequency that scales with the Strouhal number St = fD/U based on the turbine rotor diameter D. The scaling indicates the importance of the rotor-scaled annular shear layer to the dynamics of meandering at the field scale, which is consistent with findings of previous wind tunnel and computational studies. The field and tunnel spectra also reveal a deficit in large-scale turbulent energy, signaling a sheltering effect of the turbine, which blocks or deflects the largest flow scales of the incoming flow. Two different mechanisms for wake meandering—large scales of the incoming flow and shear instabilities at relatively smaller scales—are discussed and inferred to be related to the turbulent kinetic energy excess and deficit observed in the wake velocity spectra.
Keywords
Description
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
10.1002/we.2189
Previously Published Citation
Heisel M, Hong J, and M Guala (2018). The spectral signature of wind turbine wake meandering: a wind tunnel and field-scale study. Wind Energy, 21(9), 715-731. DOI: 10.1002/we.2189.
Other identifiers
Suggested citation
Heisel, Michael; Hong, Jiarong; Guala, Michele. (2018). The spectral signature of wind turbine wake meandering: a wind tunnel and field-scale study. Retrieved from the University Digital Conservancy, 10.1002/we.2189.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.