Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Recyclable reagents and Catalytic systems based on hypervalent iodine Chemistry

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Recyclable reagents and Catalytic systems based on hypervalent iodine Chemistry

Published Date

2013-07

Publisher

Type

Thesis or Dissertation

Abstract

Hofmann rearrangement of carboxamides to carbamates using Oxone® as an oxidant can be efficiently catalyzed by iodobenzene. This reaction involves hypervalent Iodine species generated in situ from catalytic amounts of PhI and Oxone® in the presence of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in aqueous methanol solutions. Under these conditions, Hofmann rearrangement of various carboxamides affords the corresponding carbamates in high yields. Aziridination of alkenes to aziridines using catalytic amounts of tetrabutylammonium iodide, meta-Chloroperoxybenzoic acid (mCPBA) and PhthNH2 can be run under metal-free conditions. This reaction involves an oxidized iodine species generated in situ from Bu4NI and mCPBA. Under optimized conditions, Conversion of various alkenes to the corresponding aziridine products proceeds in comparable yields to previous by reported procedures. A green, recyclable and efficient catalytic oxidative system based on SiO2-supported RuCl3 and 3-(dichloroiodo)benzoic acid for the oxidation of alcohols and sulfides in water is developed. This catalytic oxidative system effects clean and efficient oxidation of a wide range of alcohols to the corresponding aldehydes and ketones, or sulfides to sulfoxides in high conversions with excellent chemoselectivity, under mild conditions. Furthermore, the SiO2-RuCl3 catalyst can be recovered by simple filtration and recycled in up to six consecutive runs without significant loss of activity. The reduced form of 3-(dichloroiodo)benzoic acid, 3-iodobenzoic acid, can be easily separated from reaction mixtures and converted back to 3-(dichloroiodo)benzoic acid by treatment with NaOCl and aqueous HCl in about 90% overall yield.

Description

University of Minnesota M.S. thesis. July 2013. Major: Chemistry. Advisor: Viktor Zhdankin. 1 computer file (PDF); vii, 85 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Middleton, Kyle Richard. (2013). Recyclable reagents and Catalytic systems based on hypervalent iodine Chemistry. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/162372.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.