Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle

Escobar Sanabria, David
2015-06
Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle

Published Date

2015-06

Publisher

Type

Thesis or Dissertation

Abstract

This dissertation considers the mathematical modeling, control under uncertainty, and experimental validation of an underwater supercavitating vehicle. By traveling inside a gas cavity, a supercavitating vehicle reduces hydrodynamic drag, increases speed, and minimizes power consumption. The attainable speed and power efficiency make these vehicles attractive for undersea exploration, high-speed transportation, and defense. However, the benefits of traveling inside a cavity come with difficulties in controlling the vehicle dynamics. The main challenge is the nonlinear force that arises when the back-end of the vehicle pierces the cavity. This force, referred to as planing, leads to oscillatory motion and instability. Control technologies that are robust to planing and suited for practical implementation need to be developed. To enable these technologies, a low-order vehicle model that accounts for inaccuracy in the characterization of planing is required. Additionally, an experimental method to evaluate possible pitfalls in the models and controllers is necessary before undersea testing. The major contribution of this dissertation is a unified framework for mathematical modeling, robust control synthesis, and experimental validation of a supercavitating vehicle. First, we introduce affordable experimental methods for mathematical modeling and controller testing under planing and realistic flow conditions. Then, using experimental observations and physical principles, we create a low-order nonlinear model of the longitudinal vehicle motion. This model quantifies the planing uncertainty and is suitable for robust controller synthesis. Next, based on the vehicle model, we develop automated tools for synthesizing controllers that deliver a certificate of performance in the face of nonlinear and uncertain planing forces. We demonstrate theoretically and experimentally that the proposed controllers ensure higher performance when the uncertain planing dynamics are considered. Finally, we discuss future directions in supercavitating vehicle control.

Description

University of Minnesota Ph.D. dissertation. June 2015. Major: Aerospace Engineering and Mechanics. Advisors: Roger Arndt, Gary Balas. 1 computer file (PDF); xii, 102 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Escobar Sanabria, David. (2015). Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/175432.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.