Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Metabolic and Genetic Determinants of Urolithiasis in a Natural Canine Model

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Metabolic and Genetic Determinants of Urolithiasis in a Natural Canine Model

Published Date

2014-06

Publisher

Type

Thesis or Dissertation

Abstract

Calcium oxalate (CaOx) kidney stones are a common health problem across the world. There is a substantial inherited component to CaOx stone risk, but susceptibility genes have largely evaded identification. The goal of this thesis was to use the dog as a natural model to ascertain metabolic and genetic risk factors for urolithiasis. Cystine and urate stones have previously been reported to have shared susceptibility genes between dogs and people. This thesis demonstrated that 2,8-dihydroxyadenine urolithiasis provides a third example of stone disease with a shared genetic basis between the species. It is likely that there are also overlapping genetic risk factors for CaOx urolithiasis. Prior to initiating genetic investigations into CaOx urolithiasis, three canine breeds were evaluated for metabolic disturbances associated with stone risk. Each of the breeds was shown to have idiopathic hypercalciuria, the trait underlying stone risk in people. Two breeds were subsequently selected for genome-wide association studies. Three unique susceptibility loci were identified. This supports a polygenic basis for CaOx stone risk in dogs. All three loci harbor plasma membrane transporter genes. One locus on CFA37 was selected for variant discovery using whole genome next-generation sequencing. No putative causal mutations were identified in coding sequence for the positional genes, but markers in and near the top candidate gene, SLC39A10, were associated with disease in a large cohort. SLC39A10 encodes a plasma membrane metal ion transporter. Several metals have been debated as potential triggers of stone formation. Genotype for the SLC39A10 risk haplotype was found to correlate with urinary strontium and calcium levels, as well as stone risk. This provides evidence that dogs with the SLC39A10 risk haplotype may have a functional mutation in the gene that directly or indirectly alters handling of strontium and/or calcium. Though no coding variants were found in SLC39A10, the mutation could reside within a regulatory region of the gene. Future sequencing and expression studies are planned to further evaluate SLC39A10 and genes within the other risk loci for a role in CaOx urolithiasis.

Description

University of Minnesota Ph.D. dissertation. June 2014. Major: Comparative and Molecular Biosciences. Advisor: Edward Patterson. 1 computer file (PDF); xi, 177 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Furrow, Eva. (2014). Metabolic and Genetic Determinants of Urolithiasis in a Natural Canine Model. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/182271.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.