Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

The Challenges of Detecting Eurasian Watermilfoil with a Pseudo Labeling Semi-Supervised Convolutional Neural Network

2022-05-02
Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

The Challenges of Detecting Eurasian Watermilfoil with a Pseudo Labeling Semi-Supervised Convolutional Neural Network

Published Date

2022-05-02

Publisher

Type

Presentation

Abstract

Eurasian Watermilfoil is an invasive aquatic plant found in many bodies of water in Minnesota. It tends to out grow and kill many native plants. The current solution to removing Eurasian Watermilfoil is to kill it using a herbicide. However, this has drawbacks because the herbicide can affect native plants, it contaminates the water, and is not sprayed accurately. A solution to this problem is by using autonomous underwater vehicles equipped with a deep learning model that can detect Eurasian Watermilfoil to map it for accurate spraying. However we found this not to be the case. While trying to train a model to detect Eurasian Watermilfoil using a pseudo labeling semi-supervised and supervised convolutional neural network, it could not detect the plant due to the scarce amount of images. However it was found the pseudo labeling a diver dataset proved to be more accurate and efficent than the supervised version.

Description

Related to

Replaces

License

Series/Report Number

Funding information

This research was supported by the Undergraduate Research Opportunities Program (UROP) and the Minnesota Interactive Robotics and Vision Laboratory.

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Pargman, Connor. (2022). The Challenges of Detecting Eurasian Watermilfoil with a Pseudo Labeling Semi-Supervised Convolutional Neural Network. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/227178.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.