Combinatorial constructions motivated by K-theory of Grassmannians
2016-07
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Combinatorial constructions motivated by K-theory of Grassmannians
Authors
Published Date
2016-07
Publisher
Type
Thesis or Dissertation
Abstract
Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought to as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map in these cases. Next, using the Hecke insertion of Buch-Kresch-Shimozono-Tamvakis-Yong and the K-Knuth equivalence of Buch-Samuel in place of the Robinson-Schensted and Knuth equivalence, we introduce a K-theoretic analogue of the Poirier-Reutenauer Hopf algebra of standard Young tableaux. As an application, we rederive the K-theoretic Littlewood-Richardson rules of Thomas-Yong and of Buch-Samuel. Lastly, we define a K-theoretic analogue of Fomin's dual graded graphs, which we call dual filtered graphs. They key formula in this definition is DU-UD=D+I. Our major examples are K-theoretic analogues of Young's lattice, of shifted Young's lattice, and of the Young-Fibonacci lattice. We suggest notions of tableaux, insertion algorithms, and growth rules whenever such objects are not already present in the literature. We also provide a large number of other examples. Most of our examples arise via two constructions, which we call the Pieri construction and the Mobius construction. The Pieri construction is closely related to the construction of dual graded graphs from a graded Hopf algebra as described by Bergeron-Lam-Li, Lam-Shimozono, and Nzeutchap. The Mobius construction is more mysterious but also potentially more important as it corresponds to natural insertion algorithms.
Description
University of Minnesota Ph.D. dissertation. July 2016. Major: Mathematics. Advisor: Pavlo Pylyavskyy. 1 computer file (PDF); x, 178 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Patrias, Rebecca. (2016). Combinatorial constructions motivated by K-theory of Grassmannians. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/182175.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.