Combinatorial constructions motivated by K-theory of Grassmannians

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Combinatorial constructions motivated by K-theory of Grassmannians

Published Date

2016-07

Publisher

Type

Thesis or Dissertation

Abstract

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought to as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map in these cases. Next, using the Hecke insertion of Buch-Kresch-Shimozono-Tamvakis-Yong and the K-Knuth equivalence of Buch-Samuel in place of the Robinson-Schensted and Knuth equivalence, we introduce a K-theoretic analogue of the Poirier-Reutenauer Hopf algebra of standard Young tableaux. As an application, we rederive the K-theoretic Littlewood-Richardson rules of Thomas-Yong and of Buch-Samuel. Lastly, we define a K-theoretic analogue of Fomin's dual graded graphs, which we call dual filtered graphs. They key formula in this definition is DU-UD=D+I. Our major examples are K-theoretic analogues of Young's lattice, of shifted Young's lattice, and of the Young-Fibonacci lattice. We suggest notions of tableaux, insertion algorithms, and growth rules whenever such objects are not already present in the literature. We also provide a large number of other examples. Most of our examples arise via two constructions, which we call the Pieri construction and the Mobius construction. The Pieri construction is closely related to the construction of dual graded graphs from a graded Hopf algebra as described by Bergeron-Lam-Li, Lam-Shimozono, and Nzeutchap. The Mobius construction is more mysterious but also potentially more important as it corresponds to natural insertion algorithms.

Description

University of Minnesota Ph.D. dissertation. July 2016. Major: Mathematics. Advisor: Pavlo Pylyavskyy. 1 computer file (PDF); x, 178 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Patrias, Rebecca. (2016). Combinatorial constructions motivated by K-theory of Grassmannians. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/182175.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.