Solar gasification of biomass: design and characterization of a molten salt gasification reactor

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Solar gasification of biomass: design and characterization of a molten salt gasification reactor

Published Date

2013-12

Publisher

Type

Thesis or Dissertation

Abstract

The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt.Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol.A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.

Description

University of Minnesota Ph.D. dissertation. December 2013. Major: Mechanical Engineering. Advisor: Jane H. Davidson. 1 computer file (PDF); xv, 244 pages, appendices A-F.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Hathaway, Brandon Jay. (2013). Solar gasification of biomass: design and characterization of a molten salt gasification reactor. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/162490.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.