Finding Frequent Patterns in a Large Sparse Graph

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Finding Frequent Patterns in a Large Sparse Graph

Published Date

2003-09-25

Publisher

Type

Report

Abstract

This paper presents two algorithms based on the horizontal and vertical pattern discovery paradigms that find the connected subgraphs that have a sufficient number of edge-disjoint embeddings in a single large undirected labeled sparse graph. These algorithms use three different methods to determine the number of the edge-disjoint embeddings of a subgraph that are based on approximate and exact maximum independent set computations and use it to prune infrequentsubgraphs. Experimental evaluation on real datasets from various domains show that both algorithms achieve good performance, scale well to sparse input graphs with more than 100,000 vertices and around 200,000 edges, and significantly outperform previously developed algorithms.

Keywords

Description

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Kuramochi, Michihiro; Karypis, George. (2003). Finding Frequent Patterns in a Large Sparse Graph. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215582.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.