Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Understanding and Mitigating the Dynamic Behavior of RICWS and DMS under Wind Loading

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Understanding and Mitigating the Dynamic Behavior of RICWS and DMS under Wind Loading

Published Date

2018-05

Publisher

Type

Thesis or Dissertation

Abstract

Dynamic Messaging Signs (DMS) and Rural Intersection Conflict Warning Signs (RICWS) are roadside signs that feature much larger and heavier signs than are typically placed on their respective support systems. There is a concern that the excess weight and size of the DMS and RICWS, in conjunction with their breakaway support systems, may introduce wind-induced vibration problems not seen in the past. The AASHTO 2015 LRFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals (SLTS) does not yet address vibration design for these nontraditional roadside signs. Research was done to explore the wind-induced vibrations in the DMS and RICWS. The DMS support system, specifically the friction fuse connection, is susceptible to the formation of stress concentrations and potential fatigue issues. A dynamic numerical model was validated with experimental field data and used to evaluate the fatigue life of the DMS support system instrumented in the field. The fatigue life of the DMS instrumented in the field was found to be approximately 23.8 years. Results of the analysis should be expanded beyond the behavior of the specific DMS instrumented in the field to encompass other varieties of the DMS in service. Large amplitude oscillations under wind loading have already been observed in the RICWS. Research was done to explore the wind-induced dynamic behavior of the RICWS and determine suitable modifications to the RICWS support system for reducing the amplitude of the wind-induced oscillations. Based on data collected from a RICWS instrumented in the field and experiments done on a scaled model of the RICWS at the St. Falls Anthony Laboratory, vortex shedding was identified as the predominant wind phenomena acting on the RICWS structure. Modifications to reduce the impacts of vortex shedding, such as fins, appear most appropriate for reducing the amplitude of the wind-induced oscillations. The effectiveness of the recommended modifications requires further exploration with the experimentally validated numerical models of the RICWS.

Description

University of Minnesota M.S. thesis.May 2018. Major: Civil Engineering. Advisors: Lauren Linderman, Catherine French. 1 computer file (PDF); xv, 152 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Finley, Nicole. (2018). Understanding and Mitigating the Dynamic Behavior of RICWS and DMS under Wind Loading. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/198973.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.