Economics of Road Network Ownership: An Agent-Based Approach

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Economics of Road Network Ownership: An Agent-Based Approach

Published Date

2009

Publisher

Taylor and Francis

Type

Article

Abstract

This paper seeks to understand the economic impact of centralized and decentralized ownership structures and their corresponding pricing and investment strategies on transportation network performance and social welfare for travelers. In a decentralized network economic system, roads are owned by many agencies or companies that are responsible for pricing and investment strategies. The motivation of this study is two-fold. First, the question of which ownership structure, or industrial organization, is optimal for transportation networks has yet to be resolved. Despite several books devoted to this research issue, quantitative methods that translate ownership-related policy variables into short- and long-run network performance are lacking. Second, the U.S. and many other countries have recently seen a slowly but steadily increasing popularity of road pricing as an alternative to traditional fuel taxes. Not only is the private sector encouraged to finance new roads, this transition in revenue mechanism also makes it possible for lower-level government agencies and smaller jurisdictions to participate in network pricing and investment practice. The issue of optimal ownership is no longer a purely theoretical debate, but bears practical importance. This research adopts an agent-based simulator of network dynamics to explore the implications of centralized and decentralized ownership on mobility and social welfare, as well as potential financial issues and regulatory needs. Components of the simulator: the travel demand model, cost functions, and key variables of pricing and investment strategies, are empirically estimated and validated. Results suggest that road network is a market with imperfect competition. While there is a significant performance lag between the optimal strategy and the current network financing practice in the U.S. (characterized by centralized control, fuel taxes, and budget-balancing investment), a completely decentralized network suffers from issues such as higher-than-optimal tolls and over-investment. For the decentralized ownership structure, appropriate regulation on pricing and investment practices is necessary. Further analysis based on simulation comparisons suggests that with appropriate price regulation, a decentralized road economy consisting of profit-seeking road owners could outperform the existing centralized control, achieve net social benefits close to the theoretical optimum, and distribute a high percentage of welfare gains to travelers. Decentralized control is especially valuable in rapidly changing environments because it promptly responds to travel demand. These results seem to favor the idea of privatizing or decentralizing road ownership on congested networks. Further tests on real-world transportation networks are necessary and should make an interesting future study.

Description

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

http://dx.doi.org/10.1080/15568310802259999

Previously Published Citation

Zhang, Lei and David Levinson (2009) Economics of Road Network Ownership. International Journal of Sustainable Transportation 3(5) 339-359

Suggested citation

Zhang, Lei; Levinson, David M. (2009). Economics of Road Network Ownership: An Agent-Based Approach. Retrieved from the University Digital Conservancy, http://dx.doi.org/10.1080/15568310802259999.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.