Programmed death-1 regulates islet-specific lymphocytes in type 1 diabetes

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Programmed death-1 regulates islet-specific lymphocytes in type 1 diabetes

Published Date

2018-12

Publisher

Type

Thesis or Dissertation

Abstract

Programmed death-1 (PD-1) is a T cell inhibitory receptor important for tolerance maintenance. PD-1 is highly expressed on chronically stimulated T cells, such as those specific for persistent viral or tumor antigens. PD-1 pathway blockade revolutionized cancer therapy in recent years. While response rates are higher than with chemotherapy, not all patients respond, and some develop autoimmune-like symptoms, or even overt autoimmunity. Herein, I sought to understand how the PD-1 pathway regulated islet-specific CD4+ T cells during type 1 diabetes (T1D) progression in non-obese diabetic (NOD) mice. Since insulin itself is one of the main antigens driving T1D, we developed insulin peptide:MHCII tetramer reagents to track insulin-reactive CD4+ T cells. Insulin-specific CD4+ T cells that expressed the most PD-1 also had the highest affinity for self, suggesting that PD-1 preferentially regulated those cells with the highest autoimmune potential. In NOD mice, the majority of insulin-specific CD4+ T cells had an anergic (tolerant) phenotype, but surprisingly, PD-1 blockade did not override the anergy program. These findings suggested that the differentiation state of the CD4+ T cell pre-determine its susceptibility to PD-1 blockade. Autoantibody production is a hallmark of autoimmunity, and has also been reported in patients treated with PD-1 blockade, suggesting that PD-1 might regulate this process. Autoantibody production results from B cell:CD4+ T cell interactions in the germinal center of the lymph node. The dynamics and regulation of the germinal center in spontaneous autoimmunity and after PD-1 blockade are not well understood, primarily due to an inability to track self-specific lymphocytes. To bridge this knowledge gap, we used tetramers to phenotype islet-specific CD4+ T cells and B cells in mice. PD-1- or PD-L1-deficient mice, as well as NOD mice treated with anti-PD-1, had increased insulin autoantibodies, as well as increased insulin-specific T follicular helper CD4+ T cells and germinal center B cells compared to controls. This increase was dependent on CD4+ T cell-intrinsic PD-1 signaling and relied on peptide:MHCII recognition. Taken together, my thesis work provides a mechanistic explanation for autoantibody onset following PD-1 blockade in the clinic, and has important implications for cancer immunotherapy and autoimmunity.

Description

University of Minnesota Ph.D. dissertation. 2018. Major: Microbiology, Immunology and Cancer Biology. Advisor: Brian Fife. 1 computer file (PDF); 159 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Martinov, Tijana. (2018). Programmed death-1 regulates islet-specific lymphocytes in type 1 diabetes. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/218699.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.