Prediction of templates in the auditory cortex.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Prediction of templates in the auditory cortex.

Published Date

2009-06

Publisher

Type

Thesis or Dissertation

Abstract

In this study variation of human auditory evoked mismatch field amplitudes in response to complex tones as a function of the removal in single partials in the onset period was investigated. It was determined: 1-A single frequency elimination in a sound stimulus plays a significant role in human brain sound recognition. 2-By comparing the mismatches of the brain response due to a single frequency elimination in the "Starting Transient" and "Sustain Part" of the sound stimulus, it is found that the brain is more sensitive to frequency elimination in the Starting Transient. This study involves 4 healthy subjects with normal hearing. Neural activity was recorded with stimulus whole-head MEG. Verification of spatial location in the auditory cortex was determined by comparing with MRI images. In the first set of stimuli, repetitive ('standard') tones with five selected onset frequencies were randomly embedded in the string of rare ('deviant') tones with randomly varying inter stimulus intervals. In the deviant tones one of the frequency components was omitted relative to the deviant tones during the onset period. The frequency of the test partial of the complex tone was intentionally selected to preclude its reinsertion by generation of harmonics or combination tones due to either the nonlinearity of the ear, the electronic equipment or the brain processing. In the second set of stimuli, time structured as above, repetitive ('standard') tones with five selected sustained frequency components were embedded in the string of rare '(deviant') tones for which one of these selected frequencies was omitted in the sustained tone. In both measurements, the carefully frequency selection precluded their reinsertion by generation of harmonics or combination tones due to the nonlinearity of the ear, the electronic equipment and brain processing. The same considerations for selecting the test frequency partial were applied. Results. By comparing MMN of the two data sets, the relative contribution to sound recognition of the omitted partial frequency components in the onset and sustained regions has been determined. Conclusion. The presence of significant mismatch negativity, due to neural activity of auditory cortex, emphasizes that the brain recognizes the elimination of a single frequency of carefully chosen anharmonic frequencies. It was shown this mismatch is more significant if the single frequency elimination occurs in the onset period.

Description

University of Minnesota Ph.D. dissertation. June 2009. Major: Physics. Advisor: DR. John Broadhurst. 1 computer file (PDF); xii, 114 pages. Ill. (some col.)

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Ghanbeigi, Kimia. (2009). Prediction of templates in the auditory cortex.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/54428.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.