Numerical Simulation Of The Atmospheric Boundary Layer Over Complex Topography: A Modern Approach To A Classical Problem
2020-05
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Numerical Simulation Of The Atmospheric Boundary Layer Over Complex Topography: A Modern Approach To A Classical Problem
Authors
Published Date
2020-05
Publisher
Type
Thesis or Dissertation
Abstract
Numerical methods were developed and validated to simulate the atmospheric boundary layer (ABL) using large eddy simulation (LES). This framework captures the topography of the Earth’s surface rather than modeling it. To robustly simulate the ABL, four unique capabilities (temperature transport, topographic data, immersed boundary method with wall modeling, and turbulent inflow generation) were added to a traditional finite difference computational fluid dynamics code. The accuracy of each capability was analyzed individually using validation tests. Then, a full scale simulation of the ABL over a tidal inlet was conducted. It was found that the resolved topography of the Earth’s surface had a significant effect on the flow field. Furthermore, it was found that the results from LES are more accurate than mesoscale simulations. Lastly, it was found that the errors in the present simulation are a result of the roughness model used over the sea surface.
Description
University of Minnesota M.S.M.E. thesis. May 2020. Major: Mechanical Engineering. Advisor: Lian Shen. 1 computer file (PDF); viii, 83 pages.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Andersen, Noah. (2020). Numerical Simulation Of The Atmospheric Boundary Layer Over Complex Topography: A Modern Approach To A Classical Problem. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215004.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.