Correlation analysis between the EEG parameters and the parameters derived from ECG and Steering wheel related signals for driver drowsiness detection
2010-06
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Correlation analysis between the EEG parameters and the parameters derived from ECG and Steering wheel related signals for driver drowsiness detection
Authors
Published Date
2010-06
Publisher
Type
Thesis or Dissertation
Abstract
Physiological signals such as Electroencephalography (EEG), Electrocardiography (ECG) and nonphysiological signals such as steering wheel related parameters have been investigated for drowsiness detection in previous researches. EEG has been deemed as a reliable way to detect drowsiness; while the accuracy of using ECG or steering wheel related parameters for drowsiness detection is not as high as that of EEG’s but they have the advantages of low cost and non-intrusive. This work is devoted to find out the possibility to enhance the accuracy of drowsiness detection based on the ECG and steering wheel related parameters. The correlation between EEG and ECG parameters and the correlation between EEG and steering wheel parameters for drowsiness detection are analyzed. If strong correlation between them are found it is possible to use the ECG and steering wheel related parameters to represent the EEG parameters which means the accuracy of drowsiness detection based on ECG and steering wheel parameters can be improved. Several parameters were chosen for the correlation analysis, the EEG parameters are the alpha, beta and theta band power, the ECG parameters are heart rate, Heart Rate Variability (HRV) parameters and a parameter derived from Detrended Fluctuation Analysis (DFA), and the steering wheel related parameters are four variables derived from steering wheel movement, all of these parameters are most commonly used parameters for driver drowsiness detection in the literature. The results of the analysis showed that neither the ECG parameters nor the steering wheel related parameters have strong correlation with EEG parameters. Parameters composed of combination of ECG signal parameters and steering wheel related parameters also did not show strong linear correlation with EEG parameters, however close nonlinear relationships have been found by artificial neural network methods, the promising results have largely increased the possibilities to build driver drowsiness detection system inexpensively and intrusively.
Description
University of Minnesota M.S. thesis. June 2010. Major:Engineering Management. Advisor: Xun Yu. 1 computer file (PDF); vi, 41 pages, appendix pages 33-41.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Gu, Ye. (2010). Correlation analysis between the EEG parameters and the parameters derived from ECG and Steering wheel related signals for driver drowsiness detection. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/93138.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.