The impact of climate change on air-water exchange of toxaphene in Lake Superior

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

The impact of climate change on air-water exchange of toxaphene in Lake Superior

Published Date

2013-06

Publisher

Type

Thesis or Dissertation

Abstract

This study examined how toxaphene dynamics in Lake Superior have changed since 1995. A model developed by Swackhamer et al. (1999) was updated using measurements taken by the National Data Buoy Center to represent conditions from 1995 to 2012. Buoy trends observed on Lake Superior from 1979-2012 were projected out to 2035 to predict conditions resulting from climate change. The model was compared to sampling measurements taken in Lake Superior during the summer of 2006 and was within the 95% confidence interval of vapor-phase and dissolved-phase toxaphene concentrations. Moreover, the model predicts that climate change will decrease concentrations of toxaphene in the lake faster than if conditions remained the same, however the effect is small. In 2035, the dissolved concentration is predicted to be 20.6% less when the model includes climate change. With climate change, volatilization dominates year-round across the air-water interface, making Lake Superior an indirect source of toxaphene to the atmosphere.

Description

University of Minnesota M.S. thesis. June 2013. Major: Environmental Health. Advisor: Matt F. Simcik. 1 computer file (PDF); vi, 40 pages, appendix p. 37-40.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Knabb, Michelle Elizabeth. (2013). The impact of climate change on air-water exchange of toxaphene in Lake Superior. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/165540.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.