Linking morphology and reactivity: growth and ligand-assisted dissolution of cobalt oxyhydroxide.
2010-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Linking morphology and reactivity: growth and ligand-assisted dissolution of cobalt oxyhydroxide.
Authors
Published Date
2010-08
Publisher
Type
Thesis or Dissertation
Abstract
Reactions at the interface of solid materials have a significant role in many fields
of study, ranging from environmental science to industrial manufacturing. Identifying
and quantifying the reactive surface area of these materials is vital to understanding the
reactions in which they participate. The most basic effect of reactive surface area is
governing the reaction rate at the surface but, in some cases, it is necessary to have a far
more detailed understanding of the surface structure. Many reactions occur most
efficiently, or even exclusively, at specific types of surface site. The ability to identify
and measure these sites could dramatically improve the design of many applications, such
as heterogeneous catalysts or waste remediation systems.
One proposed method of measuring reactive surface area is the use of carefully
selected probe molecules that are specifically reactive with the surface sites of interest.
This work focuses on the development of a method for analyzing the surface
characteristics of heterogenite (β-CoOOH) using the ligand iminodiacetic acid (IDA) as a
probe. To investigate this system, first a range of model materials were necessary. The
method of heterogenite synthesis was explored, revealing that a surprising amount of
control can be exerted over the final particle morphology by altering simple factors such as reaction temperature or choice of oxidizing agent.
The ligand-assisted dissolution of heterogenite by IDA produces a mixture of sfac
and u-fac isomers of Co(IDA)2
–, and the relative amount of each isomer depends
upon the surface characteristics of the heterogenite. When heterogenite particles were
aged in suspension at room temperature, a rapid evolution of the number and type of
surface site present was observed. This change was tracked by reacting the particles with IDA then separating and quantifying the resulting Co(IDA)2
– isomers. Through this
method, it was found that the surface evolution occurs more slowly when aged in lower
pH buffer. The connection between particle morphology and reactivity was strengthened
when a link was found between the height of cylindrical heterogenite plates and the ratio
of isomers formed during the dissolution reaction. From this, an empirical relationship
between particle height and the relative amount of s-fac isomer was derived. This
relationship allowed the tracking of particle growth via dissolution reactions rather than
direct measurements.
The final connection between morphology and reactivity was discovered when
kinetic and thermodynamic studies were undertaken. The rate of reaction when the
reactant concentrations are altered suggests that both surface diffusion and product desorption processes are involved in determining the overall reaction rate. Finally, it was
hypothesized that the reactivity of some sites varies with temperature. Thus, the ratio of
products produced depends not only on the number and type of surface site present, but
also on the temperature of the reaction. Additional work is necessary to quantify this
temperature dependence.
Description
University of Minnesota Ph.D. dissertation. August 2010. Major: Chemistry. Advisor: Dr. R. Lee Penn. 1 computer file (PDF) xv, 316 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Suggested citation
Myers, Jason C.. (2010). Linking morphology and reactivity: growth and ligand-assisted dissolution of cobalt oxyhydroxide.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/116737.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.